研究生: |
林逸絃 Lin, Yee Hsien |
---|---|
論文名稱: |
開發新式磁性奈米材料進行人類幹細胞工程及其於癌症治療與軟骨分化之應用 Development of Novel Magnetic Nanomaterials for Human Stem Cell Engineering and Applications on Cancer Therapy and Chondrogenic Differentiation |
指導教授: |
張建文
Chang, Chien Wen |
口試委員: |
葉秩光
江啟勳 黃郁棻 |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 123 |
中文關鍵詞: | 磁性奈米複合材料 、人類間質幹細胞 、幹細胞基因工程 、腫瘤壞死因子誘導凋亡蛋白質傳遞 、軟骨分化 |
外文關鍵詞: | Magnetic nanomaterials, Human mesenchymal stem cells, TRAIL protein delivery, cartilage regeneration |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
基因轉染技術可透過調控細胞內基因表現而改變細胞生長、遷移或凋亡以應用於疾病治療。過去十年來,人類間質幹細胞 (hMSCs)在腫瘤治療與再生醫學領域的應用極受矚目,結合基因轉染技術將可進一步地調控幹細胞基因表達而獲取更佳的醫學應用效果。其中開發可針對hMSCs進行安全且高效率的基因轉染工具是一項重要課題。
本研究開發高分子-氧化鐵奈米粒子之複合材料作(PNT)作為hMSCs之基因磁轉染系統,此材料組成包括γ-polyglutamic acid (γ-PGA)修飾之氧化鐵奈米粒子(γ-PGA-SPIONs)、poly (β-amino esters) (PAE)以及質體DNA (pDNA)。SPIONs透過熱裂解法合成,而γPGA-SPIONs則以配基交換方法製備。以SQUID分析其飽和磁化率可達39.8 emμ/g,且於MRI T2影像中具備良好之對比效果(r2 = 334.7 mM-1s-1)。本研究中所合成之PAE於高分子/核酸重量比(polymer/pDNA weight ratio) 20以上時可有效攜載pDNA,透過靜電作用力與γPGA-SPIONs形成PNT複合基因載體可對hMSCs進行基因轉染。實驗中針對影響基因轉染效率的重要參數進行探討,包括:PAE/pDNA重量比、載體PNT稀釋倍數,以及 γPGA-SPIONs用量。於強力磁鐵吸引下,PNT載體可大幅增進hMSCs細胞的轉染效率。在無血清的環境下,PNT其磁轉染效率較PAE高分子基因載體高出三倍以上。經流式細胞儀偵測PNT於hMSCs之磁轉染效率可達70%以上,遠高於市售之轉染試劑,且於此條件下細胞存活率可維持90%以上。在含血清(10% FBS)的環境下,PNT其磁轉染效率相較於PAE或PNT無外加磁場吸引組別具有更佳的基因轉染效率。此外,hMSCs細胞經由PNT磁轉染後不影響其硬骨分化表潛力或腫瘤趨向遷移能力。
本研究針對所開發的PNT磁轉染系統,探討兩種重要的生醫應用,包括:1. 腫瘤治療與2. 幹細胞定向分化誘導。
1. 腫瘤治療應用:利用所開發之PNT磁轉染技術促使hMSCs細胞大量表達腫瘤壞死相關之誘導凋亡因子(tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)。本研究使用ELISA assay分析TRAIL protein的表現,PNT磁轉染相較於市售Lipofectamine 2000可提高hMSCs的TRAIL蛋白質表約五倍 (18.0 ng/mg → 86.3 ng/mL)。細胞共培養實驗結果指出表達TRAIL的hMSCs可有效誘導HeLa癌細胞凋亡。
2. 誘導幹細胞定向分化:將可促進hMSCs進行軟骨分化之TGF-β或Sox9基因以PNT磁轉染系統傳輸至hMSCs。相較於使用Lipofectamine 2k進行基因轉染,PNT磁轉染可提高TGF-β與Sox9表達量相較分別約五倍與四倍。經TGF-β或Sox9之磁轉染四週後,hMSCs細胞團塊切片染色上可觀察到明顯Alcian blue呈色反應,其collagen II專一性免疫螢光染色也具顯著表達。生化定量結果顯示TGF-β或Sox9磁轉染可提高hMSCs的葡萄糖胺(Glycosaminoglycans, GAGs)表達量約兩倍以上;而Collagen的表現量也提高了約四倍。
綜合以上結果,本研究所開發之PNT複合式基因載體搭配磁轉染技術可成功應用於hMSCs細胞的基因傳輸應用。其具有低細胞毒性,高效率以及可大量生產等優點,我們預期以PNT改造之hMSCs未來在腫瘤治療與再生醫學上均具有高度應用潛力。
Gene transfection is the technique capable of directly manipulating cellular gene expression, which can be applied for disease treatment via regulating cell physiology. In the past decade, human mesenchymal stem cells (hMSCs) have received great attention for their enormous potential on cancer therapy and regenerative medicine. Applications of gene transfection techniques on hMSCs further advanced their medical applications. One of the key tasks for such integration is the development of safe and efficient gene delivery tools for hMSCs.
In this study, we proposed a polymer/superparamagnetic iron oxide nanoparticles (SPIONs) polyplex (PNT) system, comprising of γ-poly (glutamic acid) (γPGA)-modified SPIONs (γPGA-SPIONs), poly (β-amino esters) (PAE), and plasmid DNA (pDNA) for efficient magnetically-assisted gene delivery (magnetofection) to hMSCs. SPIONs were prepared using thermal decomposition method, and γPGA-SPIONs were synthesized using a ligand exchange process. The magnetization of γPGA-SPIONs was up to 39.8 emμ/g measured by SQUID, which showed significant contrast enhancement on MRI T2-weighed imaging (r2 value = 334.7 mM-1s-1) of hMSCs. To prepare PNT system, PAE was used to fully condensed pDNA at or above the weight ratio (PAE pDNA) of 20. Afterwards, the polyplexes were combined with γPGA-SPIONs via electrostatic interactions to form PNT. PNT-mediated magnetofection efficiency was optimized by studying several key transfection parameters, including: polymer/pDNA weight ratio, polymer dilution factor and amount of γPGA-SPIONs. The transfection efficiency of PNT was greatly enhanced by applying with an external magnetic attraction. Under optimized magnetofection conditions, comparing to PAE polyplexes, PNT increased cellular uptake of pDNA up to 3-fold under serum-free condition. Additionally, PNT showed low cytotoxicity (viability ~ 90%) and exhibited excellent magnetofection efficiency (> 70%) on hMSCs compared to other commercial transfection agents. Additionally, PNT-mediated magnetofection did not cause detrimental effects on the osteogenic differentiation and tumor tropism of hMSCs.
In this study, we investigated the application potential of PNT magnetofection system on two important bioengineering aspects: (1) Cancer therapy and (2) Directing stem cell differentiation.
1. Cancer therapy: hMSCs were transfected to express tumor necrosis factor-related apoptosis inducing ligand (TRAIL) by using PNT magnetofection technique. TRAIL protein was successfully detected from the transfected hMSCs by ELISA assay. 5-fold increased on TRAIL expression was attained by PNT magnetofection compared to Lipofectamine 2000 (18.0 ng/mg → 86.3 ng/mL). The therapeutic potential of TRAIL-expressing hMSCs (TRAILhMSCs) for cancer therapy was explored on HeLa cells using an in vitro co-culture model. The results demonstrated that TRAILhMSCs could induce significant apoptosis on HeLa cells.
2. Directing stem cell chondrogenic differentiation: The genes known to promote stem cell chondrogensis, such as TGF-β and Sox9, were separately delivered using the PNT technique. Expression of TGF-β and Sox9 by PNT magnetofection was 5- and 4-fold higher than gene delivery by Lipofectamine 2000 respectively. After magnetofection for 4 weeks, the enhanced expression of chondrocyte-specific biomacromolecules, such as glycosaminoglycans (GAGs) and collagen II was observed from TGF-β- or Sox9-transfected hMSCs using Alcian blue staining and immunofluorescence staining. Finally, the expression amount of GAGs and collagen were quantitated by biochemical assay, showing around 2-fold increase of GAGs and 4-fold increase of collagen expression from TGF-β- or Sox9-transfected hMSCs compared to the control groups.
Taken together, we’ve successfully created a novel PNT Magnetofection system with excellent gene delivery efficiency and negligible cytotoxicity on hMSCs. Our current results suggest that the PNT-mediated genetically-engineered hMSCs possesses great potential on both cancer therapy and tissue regeneration.
[1] Wirth T, Parker N, Ylä-Herttuala S. History of gene therapy. Gene. 2013;525(2):162-9.
[2] Giacca M, Zacchigna S. Virus-mediated gene delivery for human gene therapy. Journal of controlled release. 2012;161(2):377-88.
[3] Jazwa A, Florczyk U, Jozkowicz A, Dulak J. Gene therapy on demand: Site specific regulation of gene therapy. Gene. 2013;525(2):229-38.
[4] McCrudden CM, McCarthy HO. Cancer gene therapy–key biological concepts in the design of multifunctional non-viral delivery systems. Gene Therapy-Tools and Potential Applications. 2013:81-4.
[5] Ibraheem D, Elaissari A, Fessi H. Gene therapy and DNA delivery systems. International journal of pharmaceutics. 2014;459(1):70-83.
[6] Ginn SL, Alexander IE, Edelstein ML, Abedi MR, Wixon J. Gene therapy clinical trials worldwide to 2012–an update. The journal of gene medicine. 2013;15(2):65-77.
[7] Gao X, Kim K-S, Liu D. Nonviral gene delivery: what we know and what is next. The AAPS journal. 2007;9(1):E92-E104.
[8] Elouahabi A, Ruysschaert J-M. Formation and Intracellular Trafficking of Lipoplexes and Polyplexes. Mol Ther. 2005;11(3):336-47.
[9] Brannon-Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. Advanced Drug Delivery Reviews. 2012;64, Supplement(0):206-12.
[10] Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nano. 2007;2(12):751-60.
[11] Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC. Nanoparticles in Medicine: Therapeutic Applications and Developments. Clin Pharmacol Ther. 2007;83(5):761-9.
[12] Fang J, Nakamura H, Maeda H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Advanced Drug Delivery Reviews. 2011;63(3):136-51.
[13] Greish K. Enhanced permeability and retention of macromolecular drugs in solid tumors: A royal gate for targeted anticancer nanomedicines. Journal of Drug Targeting. 2007;15(7/8):457-64.
[14] Liu Y, Miyoshi H, Nakamura M. Nanomedicine for drug delivery and imaging: A promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles. International Journal of Cancer. 2007;120(12):2527-37.
[15] Ganta S, Devalapally H, Shahiwala A, Amiji M. A review of stimuli-responsive nanocarriers for drug and gene delivery. Journal of Controlled Release. 2008;126(3):187-204.
[16] Cole AJ, Yang VC, David AE. Cancer theranostics: the rise of targeted magnetic nanoparticles. Trends in biotechnology. 2011;29(7):323-32.
[17] Shi Y, Du J, Zhou L, Li X, Zhou Y, Li L, et al. Size-controlled preparation of magnetic iron oxidenanocrystals within hyperbranched polymers and their magnetofection in vitro. J Mater Chem. 2012;22(2):355-60.
[18] Kim BH, Lee N, Kim H, An K, Park YI, Choi Y, et al. Large-Scale Synthesis of Uniform and Extremely Small-Sized Iron Oxide Nanoparticles for High-Resolution T1 Magnetic Resonance Imaging Contrast Agents. Journal of the American Chemical Society. 2011;133(32):12624-31.
[19] Sun J, Zhou S, Hou P, Yang Y, Weng J, Li X, et al. Synthesis and characterization of biocompatible Fe3O4 nanoparticles. Journal of biomedical materials research Part A. 2007;80(2):333-41.
[20] Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, et al. Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications. Chemical Reviews. 2008;108(6):2064-110.
[21] Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 2005;26(18):3995-4021.
[22] Lee J-H, Kim J-w, Cheon J. Magnetic nanoparticles for multi-imaging and drug delivery. Molecules and cells. 2013;35(4):274-84.
[23] Pankhurst Q, Thanh N, Jones S, Dobson J. Progress in applications of magnetic nanoparticles in biomedicine. Journal of Physics D: Applied Physics. 2009;42(22):224001.
[24] Plank C, Schillinger U, Scherer F, Bergemann C, Remy J-S, Krötz F, et al. The magnetofection method: using magnetic force to enhance gene delivery. Biological chemistry. 2003;384(5):737-47.
[25] Schillinger U, Brill T, Rudolph C, Huth S, Gersting S, Krötz F, et al. Advances in magnetofection—magnetically guided nucleic acid delivery. Journal of Magnetism and Magnetic Materials. 2005;293(1):501-8.
[26] Plank C, Zelphati O, Mykhaylyk O. Magnetically enhanced nucleic acid delivery. Ten years of magnetofection—Progress and prospects. Advanced drug delivery reviews. 2011;63(14):1300-31.
[27] Hughes C, Galea-Lauri J, Farzaneh F, Darling D. Streptavidin Paramagnetic Particles Provide a Choice of Three Affinity-Based Capture and Magnetic Concentration Strategies for Retroviral Vectors. Mol Ther. 2001;3(4):623-30.
[28] Mah C, Fraites JTJ, Zolotukhin I, Song S, Flotte TR, Dobson J, et al. Improved Method of Recombinant AAV2 Delivery for Systemic Targeted Gene Therapy. Mol Ther. 2002;6(1):106-12.
[29] Gersting SW, Schillinger U, Lausier J, Nicklaus P, Rudolph C, Plank C, et al. Gene delivery to respiratory epithelial cells by magnetofection. The Journal of Gene Medicine. 2004;6(8):913-22.
[30] Wang X, Zhou L, Ma Y, Li X, Gu H. Control of aggregate size of polyethyleneimine-coated magnetic nanoparticles for magnetofection. Nano Res. 2009;2(5):365-72.
[31] Gonzalez B, Ruiz-Hernandez E, Feito MJ, Lopez de Laorden C, Arcos D, Ramirez-Santillan C, et al. Covalently bonded dendrimer-maghemite nanosystems: nonviral vectors for in vitrogene magnetofection. Journal of Materials Chemistry. 2011;21(12):4598-604.
[32] Jenkins SI, Pickard MR, Granger N, Chari DM. Magnetic Nanoparticle-Mediated Gene Transfer to Oligodendrocyte Precursor Cell Transplant Populations Is Enhanced by Magnetofection Strategies. ACS Nano. 2011;5(8):6527-38.
[33] Mulens V, Morales MdP, Barber DF. Development of magnetic nanoparticles for cancer gene therapy: A comprehensive review. International Scholarly Research Notices. 2013;2013.
[34] Prijic S, Sersa G. Magnetic nanoparticles as targeted delivery systems in oncology. Radiology and oncology. 2011;45(1):1-16.
[35] Yuan C, An Y, Zhang J, Li H, Zhang H, Wang L, et al. Magnetic nanoparticles for targeted therapeutic gene delivery and magnetic-inducing heating on hepatoma. Nanotechnology. 2014;25(34):345101.
[36] Ito A, Shinkai M, Honda H, Kobayashi T. Heat-inducible TNF-alpha gene therapy combined with hyperthermia using magnetic nanoparticles as a novel tumor-targeted therapy. Cancer Gene Ther. 2001;8(9):649-54.
[37] Porada CD, Almeida-Porada G. Mesenchymal stem cells as therapeutics and vehicles for gene and drug delivery. Advanced drug delivery reviews. 2010;62(12):1156-66.
[38] Pountos I, Giannoudis PV. Biology of mesenchymal stem cells. Injury. 2005;36(3):S8-S12.
[39] Baksh D, Song L, Tuan R. Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy. Journal of cellular and molecular medicine. 2004;8(3):301-16.
[40] Shah K. Mesenchymal stem cells engineered for cancer therapy. Advanced drug delivery reviews. 2012;64(8):739-48.
[41] Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nature Reviews Immunology. 2008;8(9):726-36.
[42] Le Blanc K, Ringdén O. Immunobiology of human mesenchymal stem cells and future use in hematopoietic stem cell transplantation. Biology of Blood and Marrow Transplantation. 2005;11(5):321-34.
[43] Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 2005;105(4):1815-22.
[44] Corsten MF, Shah K. Therapeutic stem-cells for cancer treatment: hopes and hurdles in tactical warfare. The lancet oncology. 2008;9(4):376-84.
[45] Hu Y-L, Huang B, Zhang T-Y, Miao P-H, Tang G-P, Tabata Y, et al. Mesenchymal Stem Cells as a Novel Carrier for Targeted Delivery of Gene in Cancer Therapy Based on Nonviral Transfection. Molecular Pharmaceutics. 2012;9(9):2698-709.
[46] Dwyer RM, Khan S, Barry FP, O’Brien T, Kerin MJ. Advances in mesenchymal stem cell-mediated gene therapy for cancer. Stem Cell Res Ther. 2010;1(3):25.
[47] MacFarlane M, Williams AC. Apoptosis and disease: a life or death decision. EMBO reports. 2004;5(7):674-8.
[48] Shi Y. A structural view of mitochondria-mediated apoptosis. Nature Structural & Molecular Biology. 2001;8(5):394-401.
[49] Bremer E, van Dam G, Kroesen BJ, de Leij L, Helfrich W. Targeted induction of apoptosis for cancer therapy: current progress and prospects. Trends in Molecular Medicine. 2006;12(8):382-93.
[50] Lavrik I, Golks A, Krammer PH. Death receptor signaling. Journal of cell science. 2005;118(2):265-7.
[51] Wehrli P, Viard I, Bullani R, Tschopp J, French LE. Death Receptors in Cutaneous Biology and Disease. 2000;115(2):141-8.
[52] Thorburn A. Death receptor-induced cell killing. Cellular signalling. 2004;16(2):139-44.
[53] Fulda S, Debatin KM. Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene. 0000;25(34):4798-811.
[54] Wiley SR, Schooley K, Smolak PJ, Din WS, Huang C-P, Nicholl JK, et al. Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity. 1995;3(6):673-82.
[55] Pitti RM, Marsters SA, Ruppert S, Donahue CJ, Moore A, Ashkenazi A. Induction of Apoptosis by Apo-2 Ligand, a New Member of the Tumor Necrosis Factor Cytokine Family. Journal of Biological Chemistry. 1996;271(22):12687-90.
[56] Stuckey DW, Shah K. TRAIL on trial: preclinical advances in cancer therapy. Trends in molecular medicine. 2013;19(11):685-94.
[57] Wu X, Lippman SM. An intermittent approach for cancer chemoprevention. Nature reviews Cancer. 2011;11(12):879-85.
[58] LeBlanc H, Ashkenazi A. Apo2L/TRAIL and its death and decoy receptors. Cell Death & Differentiation. 2003;10(1):66-75.
[59] Elmore S. Apoptosis: a review of programmed cell death. Toxicologic pathology. 2007;35(4):495-516.
[60] Kelley SK, Ashkenazi A. Targeting death receptors in cancer with Apo2L/TRAIL. Current Opinion in Pharmacology. 2004;4(4):333-9.
[61] Kelley SK, Harris LA, Xie D, DeForge L, Totpal K, Bussiere J, et al. Preclinical Studies to Predict the Disposition of Apo2L/Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand in Humans: Characterization of in Vivo Efficacy, Pharmacokinetics, and Safety. Journal of Pharmacology and Experimental Therapeutics. 2001;299(1):31-8.
[62] Xiang H, Nguyen CB, Kelley SK, Dybdal N, Escandón E. TISSUE DISTRIBUTION, STABILITY, AND PHARMACOKINETICS OF APO2 LIGAND/TUMOR NECROSIS FACTOR-RELATED APOPTOSIS-INDUCING LIGAND IN HUMAN COLON CARCINOMA COLO205 TUMOR-BEARING NUDE MICE. Drug Metabolism and Disposition. 2004;32(11):1230-8.
[63] Kim TH, Youn YS, Jiang HH, Lee S, Chen X, Lee KC. PEGylated TNF-related apoptosis-inducing ligand (TRAIL) analogues: pharmacokinetics and antitumor effects. Bioconjugate chemistry. 2011;22(8):1631-7.
[64] Lim SM, Kim TH, Jiang HH, Park CW, Lee S, Chen X, et al. Improved biological half-life and anti-tumor activity of TNF-related apoptosis-inducing ligand (TRAIL) using PEG-exposed nanoparticles. Biomaterials. 2011;32(13):3538-46.
[65] Kim TH, Jiang HH, Park CW, Youn YS, Lee S, Chen X, et al. PEGylated TNF-related apoptosis-inducing ligand (TRAIL)-loaded sustained release PLGA microspheres for enhanced stability and antitumor activity. Journal of controlled release : official journal of the Controlled Release Society. 2011;150(1):63-9.
[66] Kim TH, Jo YG, Jiang HH, Lim SM, Youn YS, Lee S, et al. PEG-transferrin conjugated TRAIL (TNF-related apoptosis-inducing ligand) for therapeutic tumor targeting. Journal of Controlled Release. 2012;162(2):422-8.
[67] Kim I, Byeon HJ, Kim TH, Lee ES, Oh KT, Shin BS, et al. Doxorubicin-loaded porous PLGA microparticles with surface attached TRAIL for the inhalation treatment of metastatic lung cancer. Biomaterials. 2013;34(27):6444-53.
[68] Bae S, Ma K, Kim TH, Lee ES, Oh KT, Park E-S, et al. Doxorubicin-loaded human serum albumin nanoparticles surface-modified with TNF-related apoptosis-inducing ligand and transferrin for targeting multiple tumor types. Biomaterials. 2012;33(5):1536-46.
[69] Lee ALZ, Dhillon SHK, Wang Y, Pervaiz S, Fan W, Yang YY. Synergistic anti-cancer effects via co-delivery of TNF-related apoptosis-inducing ligand (TRAIL/Apo2L) and doxorubicin using micellar nanoparticles. Molecular BioSystems. 2011;7(5):1512-22.
[70] Jiang HH, Kim TH, Lee S, Chen X, Youn YS, Lee KC. PEGylated TNF-related apoptosis-inducing ligand (TRAIL) for effective tumor combination therapy. Biomaterials. 2011;32(33):8529-37.
[71] Mohr A, Lyons M, Deedigan L, Harte T, Shaw G, Howard L, et al. Mesenchymal stem cells expressing TRAIL lead to tumour growth inhibition in an experimental lung cancer model. Journal of cellular and molecular medicine. 2008;12(6b):2628-43.
[72] Li L, Li F, Tian H, Yue W, Li S, Chen G. Human mesenchymal stem cells with adenovirus-mediated TRAIL gene transduction have antitumor effects on esophageal cancer cell line Eca-109. Acta biochimica et biophysica Sinica. 2014;46(6):471-6.
[73] Loebinger MR, Eddaoudi A, Davies D, Janes SM. Mesenchymal stem cell delivery of TRAIL can eliminate metastatic cancer. Cancer research. 2009;69(10):4134-42.
[74] Grisendi G, Bussolari R, Cafarelli L, Petak I, Rasini V, Veronesi E, et al. Adipose-derived mesenchymal stem cells as stable source of tumor necrosis factor–related apoptosis-inducing ligand delivery for cancer therapy. Cancer research. 2010;70(9):3718-29.
[75] Reagan MR, Seib FP, McMillin DW, Sage EK, Mitsiades CS, Janes SM, et al. Stem cell implants for cancer therapy: TRAIL-expressing mesenchymal stem cells target cancer cells in situ. Journal of breast cancer. 2012;15(3):273-82.
[76] Loebinger M, Sage E, Davies D, Janes S. TRAIL-expressing mesenchymal stem cells kill the putative cancer stem cell population. British journal of cancer. 2010;103(11):1692-7.
[77] Sasportas LS, Kasmieh R, Wakimoto H, Hingtgen S, van de Water JA, Mohapatra G, et al. Assessment of therapeutic efficacy and fate of engineered human mesenchymal stem cells for cancer therapy. Proceedings of the National Academy of Sciences. 2009;106(12):4822-7.
[78] Huey DJ, Hu JC, Athanasiou KA. Unlike bone, cartilage regeneration remains elusive. Science. 2012;338(6109):917-21.
[79] Redman S, Oldfield S, Archer C. Current strategies for articular cartilage repair. Eur Cell Mater. 2005;9(23-32):23-32.
[80] James AW, Xu Y, Lee JK, Wang R, Longaker MT. Differential Effects of transforming growth factor-beta1 and-beta3 on chondrogenesis in posterofrontal cranial suture-derived mesenchymal cells in vitro. Plastic and reconstructive surgery. 2009;123(1):31.
[81] Puetzer JL, Petitte JN, Loboa EG. Comparative review of growth factors for induction of three-dimensional in vitro chondrogenesis in human mesenchymal stem cells isolated from bone marrow and adipose tissue. Tissue Engineering Part B: Reviews. 2010;16(4):435-44.
[82] Ikeda T, Kawaguchi H, Kamekura S, Ogata N, Mori Y, Nakamura K, et al. Distinct roles of Sox5, Sox6, and Sox9 in different stages of chondrogenic differentiation. Journal of bone and mineral metabolism. 2005;23(5):337-40.
[83] Chamberlain JR, Schwarze U, Wang P-R, Hirata RK, Hankenson KD, Pace JM, et al. Gene targeting in stem cells from individuals with osteogenesis imperfecta. Science. 2004;303(5661):1198-201.
[84] L Santos J, Pandita D, Rodrigues J, P Pego A, L Granja P, Tomás H. Non-viral gene delivery to mesenchymal stem cells: methods, strategies and application in bone tissue engineering and regeneration. Current gene therapy. 2011;11(1):46-57.
[85] Madeira C, Mendes R, Ribeiro S, Boura J, Aires-Barros M, da Silva C, et al. Nonviral gene delivery to mesenchymal stem cells using cationic liposomes for gene and cell therapy. BioMed Research International. 2010;2010.
[86] Halim NSSA, Fakiruddin KS, Ali SA, Yahaya BH. A Comparative Study of Non-Viral Gene Delivery Techniques to Human Adipose-Derived Mesenchymal Stem Cell. International journal of molecular sciences. 2014;15(9):15044-60.
[87] Song L, Chau L, Sakamoto Y, Nakashima J, Koide M, Tuan RS. Electric Field-Induced Molecular Vibration for Noninvasive, High-Efficiency DNA Transfection. Mol Ther. 2004;9(4):607-16.
[88] Kim JA, Cho K, Shin MS, Lee WG, Jung N, Chung C, et al. A novel electroporation method using a capillary and wire-type electrode. Biosensors and Bioelectronics. 2008;23(9):1353-60.
[89] Haleem-Smith H, Derfoul A, Okafor C, Tuli R, Olsen D, Hall DJ, et al. Optimization of high-efficiency transfection of adult human mesenchymal stem cells in vitro. Molecular biotechnology. 2005;30(1):9-19.
[90] Hamm A, Krott N, Breibach I, Blindt R, Bosserhoff AK. Efficient transfection method for primary cells. Tissue engineering. 2002;8(2):235-45.
[91] Dang JM, Leong KW. Natural polymers for gene delivery and tissue engineering. Advanced drug delivery reviews. 2006;58(4):487-99.
[92] Luten J, van Nostrum CF, De Smedt SC, Hennink WE. Biodegradable polymers as non-viral carriers for plasmid DNA delivery. Journal of Controlled Release. 2008;126(2):97-110.
[93] Mastrobattista E, Bravo SA, van der Aa M, Crommelin DJ. Nonviral gene delivery systems: from simple transfection agents to artificial viruses. Drug Discovery Today: Technologies. 2005;2(1):103-9.
[94] Kane NM, McRae S, Denning C, Baker AH. Viral and non-viral gene delivery and its role in pluripotent stem cell engineering. Drug Discovery Today: Technologies. 2009;5(4):e107-e15.
[95] Lv H, Zhang S, Wang B, Cui S, Yan J. Toxicity of cationic lipids and cationic polymers in gene delivery. Journal of Controlled Release. 2006;114(1):100-9.
[96] Vanderbyl S, MacDonald G, Sidhu S, Gung L, Telenius A, Perez C, et al. Transfer and Stable Transgene Expression of a Mammalian Artificial Chromosome into Bone Marrow‐Derived Human Mesenchymal Stem Cells. Stem Cells. 2004;22(3):324-33.
[97] Incani V, Tunis E, Clements BA, Olson C, Kucharski C, Lavasanifar A, et al. Palmitic acid substitution on cationic polymers for effective delivery of plasmid DNA to bone marrow stromal cells. Journal of Biomedical Materials Research Part A. 2007;81A(2):493-504.
[98] Clements BA, Incani V, Kucharski C, Lavasanifar A, Ritchie B, Uludağ H. A comparative evaluation of poly-l-lysine-palmitic acid and Lipofectamine ™ 2000 for plasmid delivery to bone marrow stromal cells. Biomaterials. 2007;28(31):4693-704.
[99] Gheisari Y, Soleimani M, Azadmanesh K, Zeinali S. Multipotent mesenchymal stromal cells: optimization and comparison of five cationic polymer-based gene delivery methods. Cytotherapy. 2008;10(8):815-23.
[100] Yang F, Green J, Dinio T, Keung L, Cho S, Park H, et al. Gene delivery to human adult and embryonic cell-derived stem cells using biodegradable nanoparticulate polymeric vectors. Gene therapy. 2009;16(4):533-46.
[101] Ahn HH, Lee MS, Cho MH, Shin YN, Lee JH, Kim KS, et al. DNA/PEI nano-particles for gene delivery of rat bone marrow stem cells. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2008;313:116-20.
[102] Farrell L-L, Pepin J, Kucharski C, Lin X, Xu Z, Uludag H. A comparison of the effectiveness of cationic polymers poly-l-lysine (PLL) and polyethylenimine (PEI) for non-viral delivery of plasmid DNA to bone marrow stromal cells (BMSC). European Journal of Pharmaceutics and Biopharmaceutics. 2007;65(3):388-97.
[103] Ahn HH, Lee JH, Kim KS, Lee JY, Kim MS, Khang G, et al. Polyethyleneimine-mediated gene delivery into human adipose derived stem cells. Biomaterials. 2008;29(15):2415-22.
[104] Clements BA, Bai J, Kucharski C, Farrell L-L, Lavasanifar A, Ritchie B, et al. RGD conjugation to polyethyleneimine does not improve DNA delivery to bone marrow stromal cells. Biomacromolecules. 2006;7(5):1481-8.
[105] Saraf A, Hacker MC, Sitharaman B, Grande-Allen KJ, Barry MA, Mikos AG. Synthesis and conformational evaluation of a novel gene delivery vector for human mesenchymal stem cells. Biomacromolecules. 2008;9(3):818-27.
[106] Santos JL, Oramas E, Pêgo AP, Granja PL, Tomás H. Osteogenic differentiation of mesenchymal stem cells using PAMAM dendrimers as gene delivery vectors. Journal of Controlled Release. 2009;134(2):141-8.
[107] Ye L, Haider HK, Esa WB, Law PK, Zhang W, Su L, et al. Nonviral vector-based gene transfection of primary human skeletal myoblasts. Experimental Biology and Medicine. 2007;232(11):1477-87.
[108] Glick BR. Metabolic load and heterologous gene expression. Biotechnology advances. 1995;13(2):247-61.
[109] Liao Z-X, Peng S-F, Ho Y-C, Mi F-L, Maiti B, Sung H-W. Mechanistic study of transfection of chitosan/DNA complexes coated by anionic poly(γ-glutamic acid). Biomaterials. 2012;33(11):3306-15.
[110] Guo S, Huang Y, Zhang W, Wang W, Wei T, Lin D, et al. Ternary complexes of amphiphilic polycaprolactone-graft-poly (N,N-dimethylaminoethyl methacrylate), DNA and polyglutamic acid-graft-poly(ethylene glycol) for gene delivery. Biomaterials. 2011;32(18):4283-92.
[111] Liu W-M, Xue Y-N, He W-T, Zhuo R-X, Huang S-W. Dendrimer modified magnetic iron oxide nanoparticle/dna/pei ternary complexes: A novel strategy for magnetofection. Journal of Controlled Release. 2011;152, Supplement 1(0):e159-e60.
[112] Namgung R, Singha K, Yu MK, Jon S, Kim YS, Ahn Y, et al. Hybrid superparamagnetic iron oxide nanoparticle-branched polyethylenimine magnetoplexes for gene transfection of vascular endothelial cells. Biomaterials. 2010;31(14):4204-13.
[113] Xie L, Jiang W, Nie Y, He Y, Jiang Q, Lan F, et al. Low aggregation magnetic polyethyleneimine complexes with different saturation magnetization for efficient gene transfection in vitro and in vivo. RSC Advances. 2013;3(45):23571-81.
[114] Xie L, Jiang Q, He Y, Nie Y, Yue D, Gu Z. Insight into the efficient transfection activity of a designed low aggregated magnetic polyethyleneimine/DNA complex in serum-containing medium and the application in vivo. Biomaterials Science. 2015.
[115] Choi SA, Hwang S-K, Wang K-C, Cho B-K, Phi JH, Lee JY, et al. Therapeutic efficacy and safety of TRAIL-producing human adipose tissue–derivedmesenchymal stem cells againstexperimental brainstem glioma. Neuro-Oncology. 2010.
[116] Grisendi G, Bussolari R, Cafarelli L, Petak I, Rasini V, Veronesi E, et al. Adipose-Derived Mesenchymal Stem Cells as Stable Source of Tumor Necrosis Factor–Related Apoptosis-Inducing Ligand Delivery for Cancer Therapy. Cancer Research. 2010;70(9):3718-29.
[117] Menon LG, Kelly K, Yang HW, Kim S-K, Black PM, Carroll RS. Human Bone Marrow-Derived Mesenchymal Stromal Cells Expressing S-TRAIL as a Cellular Delivery Vehicle for Human Glioma Therapy. STEM CELLS. 2009;27(9):2320-30.
[118] Udenfriend S. Formation of Hydroxyproline in Collagen. Science. 1966;152(3727):1335-40.
[119] Park K, Yang J-A, Lee M-Y, Lee H, Hahn SK. Reducible Hyaluronic Acid–siRNA Conjugate for Target Specific Gene Silencing. Bioconjugate chemistry. 2013;24(7):1201-9.
[120] Cheng R, Feng F, Meng F, Deng C, Feijen J, Zhong Z. Glutathione-responsive nano-vehicles as a promising platform for targeted intracellular drug and gene delivery. Journal of Controlled Release. 2011;152(1):2-12.
[121] Meng F, Hennink WE, Zhong Z. Reduction-sensitive polymers and bioconjugates for biomedical applications. Biomaterials. 2009;30(12):2180-98.