研究生: |
甘能青 Kan, Neng-Ching |
---|---|
論文名稱: |
無添加黏著劑之非晶五氧化二釩負極材料於鋰離子電池之電化學研究 Electrochemical study of binder-free amorphous vanadium pentoxide anode for lithium ion battery |
指導教授: |
甘炯耀
Gan, Jon-Yiew |
口試委員: |
蔡哲正
Tsai, Cho-Jen 李紫原 Lee, Chi-Young 黃振昌 Hwang, Jenn-Chang 陳翰儀 Chen, Hen-Yi 顏文群 Yen, Wen-Chun |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 75 |
中文關鍵詞: | 釩氧化物 、負極材料 、鋰離子電池 |
外文關鍵詞: | vanadium oxide, anode materials, lithium ion battery |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來隨著消費性電子產品的普及,使得二次儲能源件的需求與日俱增,其中具備高能量密度以及循環壽命的鋰離子電池在發展上最受人矚目。在商業化鋰離子電池負極材料中,金屬氧化物鈦酸鋰(LTO)具有相對碳材300倍的循環壽命以及快速充放電的特性,使其能夠在市場上脫穎而出。而在近期研究發現,五氧化二釩(V2O5)具有和LTO相同的儲鋰機制並擁有較高的嵌鋰量,更適合用於負極材料上。另外在晶體結構上,非晶態V2O5又相對結晶態有較好的可逆比電容。
本論文以非晶V2O5作為活性材料,利用水熱法直接沉積至多孔泡沫鎳集流片上,鋰離子電池測試結果顯示,在低電流密度0.5C充放電50圈後,可逆比電容仍可達884 mAh/g,且比電容維持率高達94.21%;然而在高電流密度1C充放電50圈後,比電容維持率僅剩77.74%,經由微分電容曲線比對後,發現充放電速率的改變主要影響低電位的比電容變化,相反的,衰退現象主要是在高電位的反應所主導。
另一方面,藉由和還原氧化石墨稀複合後,可提升1C充放電的比電容維持率至82%,並在交流阻抗分析中以時間常數模擬等效電路圖所代表的電化學反應,由時間常數的分析結果可得到在非晶V2O5和泡沫鎳之間的電荷傳輸阻抗Rct為影響電池穩定性的關鍵因素。
In recent years, as the popularity rate of consumer electronic product increases, the demand of secondary energy storage device increases. Among them, lithium ion battery(LIB) which possessed outstanding energy density and cycle life has gotten much attention. For the commercial anode materials of LIB, lithium titanate(LTO)metal oxide anode has shown 300 times the cycle life of carbon materials and higher charge/discharge rate, making it stand out from the market. In recent research, vanadium pentoxide(V2O5) has revealed the same lithium storage mechanism as LTO and has the higher amount of lithium intercalation than LTO, it’s more suitable for anode material. Moreover, amorphous V2O5 gets more reversible specific capacity than crystalline state.
In this thesis, we directly deposited amorphous V2O5 on porous nickel foam current collector by hydrothermal process. The LIB test demonstrates that after 50 cycles, the reversible specific capacity can reach 884 mAh/g and the retention can be maintained at 94.21% under low current density 0.5C. However, when the current density increases to 1C level, the retention decreases merely to 77.74% after 50 cycles. By taking differential capacity curves into comparison, we find the effect of charge/discharge rate that affects the low-voltage specific capacity. In contrast, the degradation of retention mainly takes place at high-voltage peak.
On the other hand, when amorphous V2O5 combined with reduced graphene oxide(rGO), it promotes the retention to 82% at a rate of 1C. Besides, through AC impedance analysis, the RC time constant model has been utilized to simulate the electrochemical reaction of equivalent circuit. Based on the result of time constant, the key point of charging/discharging stability is caused by the charge transfer resistance Rct between amorphous V2O5 and nickel foam interface.
第一章
[1] Yoshino, A., The birth of lithium-ion battery. Angewandte Chemie 2012, 51(24), 5798-800.
[2] Chockla, A. M. et al. / ACS applied materials & interfaces 2012, 4(9), 4658-64
[3]呂學龍, The Development Status & Trends of Main Materials for the WW Power LIB2016, 工研院IEK
[4] Oh B. Chae et al. / Chem. Mater. 2014, 26, 5874−5881
[5] Xifei Li et al. / Electrochemistry Communications 12 (2010) 1222–1225
[6] X. H. Huang, J. P. Tu,z Z. Y. Zeng, J. Y. Xiang, and X. B. Zhao Journal of The Electrochemical Society, 155 _6_ A438-A441 _2008_
[7] X.H. Huang, J.P. Tu, X.H. Xia, X.L. Wang, J.Y. Xiang. Electrochemistry Communications 10 (2008) 1288–1290
[8]黃可龍, 王兆翔, 劉素琴 編著, 馬振基 校訂.鋰離子電池原理與技術
[9] T. Deng, X. Zhou / Materials Letters 176 (2016) 151–154
[10] Y. Li et al. / Electrochemistry Communications 72 (2016) 69–73
[11] R. Xu et al. / Chemical Engineering Journal 296 (2016) 349–355
[12] H. Ge et al. / Journal of Power Sources 297 (2015) 436e441
第二章
[1] H. Lee et al. / Journal of Power Sources 284 (2015) 103e108
[2] Hansu Kim et al. / Chem. Soc. Rev., 2013, 42, 9011--9034 9011
[3] J.B. Goodenough, U.S. Patent 4,302,518 (issued 1980/3/31)
[4] S. Basu, U.S. Patent 4,423,125 (issued 1982/9/13)
[5] Dunn, B.; Kamath, H.; Tarason, J. M., Electrical energy storage for the grid: a battery of choices. Science 2011, 334(6058), 928-35.
[6] Ali Eftekhari, Energy Storage Materials 7 (2017) 157–180
[7] T. Zhang et al / Materials Internationals 2013;23(3):256-272
[8] C.Delmas et al. Power Sources, 68 (1997) 120.
[9] J.Cho et al. Electrochem. Soc., 147 (2000) 15.
[10] H.-J. Noh et al. / Journal of Power Sources 233 (2013) 121-130
[11] M.H.Liu, H. T. Huang. US Patent 9293766 B2 (2016)
[12] Neil Spinner et al. J. Mater. Chem. A, 2014, 2, 1627–1630 | 1627
[13] Dean, J. A. Lange’s Handbook of Chemistry; McGraw-Hill: New York, 1998.
[14] R. Dash et al. Sci. Rep. 6 (2016) 27449
[15] Y. Li et al. / Electrochemistry Communications 72 (2016) 69–73
[16] C.Delmas et al. Solid State Ionics 69 (1994) 257-264
[17] J.Galy, J. Solid State Chem. 100 (1992) 229.
[18] Xiao-Fei Zhang et al. / Chem. Mater. 2011, 23, 5290−5292
[19] Yong-Sheng Hu et al. / Angew. Chem. Int. Ed. 2009, 48, 210 –214
[20] C.Delmas et al. Journal of Power Sources, 34 (1991) 113-118
[21] Oh B. Chae et al. / Chem. Mater. 2014, 26, 5874−5881
[22] Debra R. Rolisona and Bruce Dunnb / J. Mater. Chem., 2001, 11, 963–980
[23] J. Livage / Chem. Mater., Vol. 3, No. 4, 1991 579
[24] Yong-Sheng Hu et al. Angew. Chem. Int. Ed. 2009, 48, 210 –214
[25] Zelang Jian et al. Chem. Commun., 2015, 51, 229--231 | 229
[26] Xiao-Fei Zhang et al. Chem. Mater. 2011, 23, 5290−5292
[27]洪偉修教授. 世界上最薄的材料—石墨烯.98康熹化學報報
[28] Guodong Du, Kuok Hau Seng et al. RSC Adv., 2011, 1, 690–697 | 691
[29] Qi Liu et al. / NATURE COMMUNICATIONS | DOI: 10.1038/ncomms7127
[30] G. S. Zakharova et al. / Dalton Trans., 2013, 42, 4897–4902 | 4
[31] Xianhong Rui et al. / RSC Adv., 2011, 1, 117–122 | 117
[32] W.-J. Li, Z.-W. Fu / Applied Surface Science 256 (2010) 2447–2452
[33] Yu Fan, Qing Zhang , Qizhen Xiao , Xinghui Wang , Kai Huang /CARBON 59 (2013) 264 – 269
[34] S. Sengupta et al. / Journal of Alloys and Compounds 705 (2017) 290-300
第三章
[1] N. Jayaprakash et al. / Chem. Commun., 2011, 47, 12610–12612
[2] Guicun Li et al. / J. Phys. Chem. B, Vol. 110, No. 19, 2006
[3] Ji Chen et al. / Carbon 64 ( 2013 ) 225-229
[4] F. Tuinstra and J. L. koenig / The Journal of Chemical Physics Vol. 53, No. 31, 197
第四章
[1] Tie Jun Lin, Xuan Meng, Li Shi / Journal of Molecular Catalysis A: Chemical 396 (2015) 77–83
[2] Chia-Ching and Cheng-Fu Nanoscale Research Letters 2013, 8:33
[3] J.Mendialdua , R.Casanova , Y.Barbaux / Journal of Electron Spectroscopy and Related Phenomena 71 (1995) 246-261
[4] S. Dong et al. Chem. Eur. J. 2009, 15, 6116 – 6120
[5] Matthias Hilder et al. / Phys. Chem. Chem. Phys., 2011, 13, 9187–9193 9187
[6] Zhou et al. / Chem. Mater., Vol. 21, No. 13, 2009 2951
[7] X. Hu et al. / Applied Surface Science 329 (2015) 83–86
[8] D. H. Nagaraju, et al. / J. Mater. Chem. A, 2014, 2, 17146–17152 | 17147
[9] Vesna Mišković-Stanković et al. / Carbon Letters Vol. 16, No. 4, 233-240 (2015)
[10] Sitansu Sekhar Nanda, Dong Kee Yi, Scientific Reports | 6:28443 |
[11] Bilal Ahmad Bhat,a G. R. Khan / RSC Adv., 2015, 5, 52602–52611 | 52603
[12] Shibing Ni, Xiaohu Lv, Tao Li, Xuelin Yang and Lulu Zhang /J. Mater. Chem. A, 2013, 1, 1544–1547
[13] J..Farcy , R.Messina , and J.Perichon / J.Electrochem. Soc., Vol. 137, No.5, May 1990
[14]黃可龍, 王兆翔, 劉素琴 編著, 馬振基 校訂.鋰離子電池原理與技術