研究生: |
李尚諭 Li, Shang-Yu. |
---|---|
論文名稱: |
利用TRACE與FRAPTRAN程式分析馬鞍山電廠全黑事故與喪失冷卻水事故之核燃料行為 Fuel Rod Behavior Analysis for Maanshan Nuclear Power Plant under Loss of Coolant Accident and Station Blackout Conditions |
指導教授: |
陳紹文
Chen, Shao-Wen. 王仲容 Wang, Jong-Rong. |
口試委員: |
施純寬
Shih, Chun-Kuan. 楊融華 Yang, Jung-Hua. |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 核子工程與科學研究所 Nuclear Engineering and Science |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 106 |
中文關鍵詞: | 壓水式 、TRACE 、FRAPTRAN 、電廠全黑 、破口喪失冷卻水事故 |
外文關鍵詞: | PWR, TRACE, FRAPTRAN, SBO, LOCA |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
日本福島核子事故顯示出電廠在面對超過設計基準事故時緊急替代設備與人員訓練的不足。面對類福島事故,除了強化電廠設施外,台灣電力公司提出斷然處置程序之目的是在事故發生初期便立即進行降壓操作,若廠內正規注水系統不可用,則同時利用替代注水設備,以確保核燃料被水覆蓋。
本研究使用TRACE模擬與分析馬鞍山電廠(三迴路壓水式核電廠)發生電廠全黑事故與破口喪失冷卻水事故,探討斷然處置程序在面對複合式災變發生時的事故緩和能力,並利用FRAPTRAN程式對核燃料行為進行分析,確保核燃料是否符合以下規範:一、護套最高溫度需在1477K以下,二、護套氧化層厚度不可超過護套厚度之17%,三、護套應變不可超過0.01。
本研究分為三大部分,第一部分為先模擬馬鞍山電廠假想電廠全黑事故五種處置案例,並分析核燃料行為。第二部分為模擬電廠假設發生大破口喪失冷卻水與小破口喪失冷卻水事故,並對核燃料行為分析。第三部分為模擬電廠假設發生電廠全黑事故且同時發生破口喪失冷卻水事故,並對破口大小進行靈敏度分析與核燃料行為分析。
經過分析後發現,在本研究假設前提下,模擬結果顯示斷然處置措施能夠有效地應對電廠全黑,或是發生破口喪失冷卻水事故時,皆能確保燃料安全。
Fukushima Daiichi Nuclear Power Plant (NPP) occurred the disaster, which was caused by the earthquake and tsunami. To handle the Fukushima-like conditions, Taiwan Power Company proposed the Ultimate Response Guideline (URG) to ensure the NPP safety. The purpose of this mitigation strategy is to keep the fuels under water. The current criteria are listed as follows: (1) The Peak Cladding Temperature (PCT) is below 1088 K (1500°F) for Station-Blackout (SBO) and below 1477 K (2200°F) for loss of coolant accident (LOCA). (2) The maximum thickness of the cladding oxidation shall not exceed 17% of the cladding thickness. (3) The cladding strain shall not exceed 0.01.
In this study, the analysis of TRACE was performed for a Maanshan Nuclear Power Plant severe accident (LOCA and SBO). The Fuel rod behavior analysis by using FRAPTRAN code was also performed. In addition, three parts of simulation are presented in this study. First part is five cases analysis for SBO. Second part is small and large break LOCA analysis. Last part is five different break size cases analysis for LOCA+SBO.
According to the analysis results, it shows that the URG can effectively cope with the SBO. The URG can also cope with the LOCA and the fuel rod safety can be maintained during the SBO or LOCA.
參考文獻
[1] 馬鞍山電廠訓練教材,2016
[2] H. Esmaili, D. Helton, D. Marksberry, R. Sherry, P. Appignani, D. Dube, M. Tobin, R. Buell, T. Koonce, J. Schroeder, “Confirmatory Thermal-Hydraulic Analysis to Support Specific Success Criteria in the Standardized Plant Analysis Risk Models – Surry and Peach Bottom (NUREG-1953)”, USNRC NUREG Report, September 2011
[3] Andrija Volkanovski, Andrej Prosek, “Extension of station blackout coping capability and implications on nuclear safety”, Nuclear Engineering and Design, Volume 255, Pages 16-27, February 2013
[4] T. C. WANG, S. J. WANG, J. T. TENG, “Simulation of A PWR Reactor Vessel Level Indicating System During Station Blackout with MELCOR 1.8.5”, Nuclear Technology, Volume 156, Number 2, Pages 133-139, November 2006
[5] K.S. Liang, S.C. Chiang, Y.F. Hsu, H.J. Young, B.S. Pei, L.C. Wang, “The ultimate emergency measures to secure a NPP under an accidental condition with no designed power or water supply”, Nuclear Engineering and Design, Vol. 253, Issue 4, December 2012, pp. 259–268
[6] 黃凱群,以TRACE程式進行馬鞍山電廠全黑事故分析與斷然處置策略之探討
[7] Shang-Yu Lee, Jung-Hua YANG, Shao-Wen CHEN, Jong-Rong WANG, Chunkuan SHIH, Wan-Yun LI, “Fuel Rod Behavior Analysis Using FRAPTRAN/TRACE Code for Maanshan NPP under Fukushima-like Conditions”
[8] U.S. NRC, Overview Westinghouse Realistic (Best-Estimate) LOCA Methodology(2009)
[9] R. Pericas, “Comparison of Best-Estimate Plus Uncertainty and Conservative Methodologies for a PWR MSLB Analysis Using a Coupled 3-D Neutron-Kinetics-Thermal-Hydraulic Code”, Nuclear Technology, Volume 198, Page 193-201, 2017
[10] Chunkuan Shih, Jung-Hua Yang, Jong-Rong Wang, Shao-Wen Chen, NUREG/IA-0471 “Fuel Rod Behavior and Uncertainty Analysis by FRAPTRAN/TRACE/DAKOTA Code in Maanshan LBLOCA”, 2016
[11] Liang Hu, Yapei Zhang, Longze Li, G.H. Su*, Wenxi Tian, Suizheng Qiu, Investigation of severe accident scenario of PWR response to LOCA along with SBO, Progress in Nuclear Energy, Volume 83, Pages 159-166, 2015
[12] Shang-Yu Li, Shao-Wen Chen, Jong-Rong Wang, Jung-Hua Yang “Fuel Rod Behavior Analysis for Maanshan Nuclear Power Plant under LOCA/SBO Conditions”, WRFPM, Jeju, Korea, 2017.
[13] Ken Jones, TRACE V5.0 user’s manual, U.S. NRC, Washington DC, 2010.
[14] J.Freixa, A Manera, “Analysis of an RPV upper head SBLOCA at the ROSA facility using TRACE”, Nuclear Engineering and Design, Volume 240, Issue 7, July 2010, Pages 1779~1788.
[15] J. Freixa, A. Manera, “Verification of a TRACE EPR model on the basis of a scaling calculation of an SBLOCA ROSA test” , Nuclear Engineering and Design, Volume 241, Issue 3, March 2011, Pages 888~896.
[16] Konstantin Nikitin, Annalisa Manera, “Analysis of an ADS spurious opening event at a BWR/6 by means of the TRACE code”, Nuclear Engineering and Design, Volume 241, Issue 6, June 2011, Pages 2240~2247.
[17] Bajore, Bernard, “DEVELOPMENT, VALIDATION AND ASSESSMENT OF THE TRACE THERMAL-HYDRAULICS SYSTEMS CODE”, NURETH-16, Chicago, U.S., 2015.
[18] 施純寬、白寶實,「核電廠系統安全分析應用程式TRACE 之研究與應用」,原能會委託研究計畫報告,2010。
[19] K.J. Geelhood, W.G.L., C.E. Beyer, FRAPTRAN 2.0: Integral Assessment, Pacific Northwest National Laboratory, Richland, 2016
[20] FRAPTRAN-2.0: A Computer Code for the Transient Analysis of Oxide Fuel Rods, 2016.
[21] 李宛芸,「核燃料護套行為評估方法論建立與應用」,國立清華大學核子工程與科學研究所,博士論文,中華民國一○七年
[22] 張皓鈞, 利用TRACE/FRAPTRAN對國聖電廠進行增壓暫態的燃料護套機械性質與不準度分析
[23] U.S. NRC, Standard Review Plan, NUREG-0800 (2007)
[24] U.S. NRC, 10CFR50.46c, ML110970044 (2011).
[25] Pressurized Water Reactor (PWR) Systems Concepts Manual, USNRC Technical Training Center
[26] 邱樂聰,「台灣電力公司馬鞍山電廠機組斷然處置程序指引」,台灣電力公司,2013。
[27] 孫革非,「核三廠斷然處置措施與業界FLEX救援策略整併規劃」,2016。