簡易檢索 / 詳目顯示

研究生: 李俊達
Lee, Chun-Ta
論文名稱: 用於檢測汞離子的適配體基場效電晶體感測器之製作
Fabrication of Aptamer-based Field Effect Transistor Sensors for Detecting Mercury Ions
指導教授: 王玉麟
Wang, Yu-Lin
口試委員: 李博仁
Lee, Bor-Ran
林宗弘
Lin, Zong-Hong
董國忠
Dong, Guo-Chung
陳榮治
Chen, Jung-Chih
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 48
中文關鍵詞: 適體場效電晶體快速偵測
外文關鍵詞: Aptamer, Field-effect transistor, Mercury, Rapid test
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著現代科技和工業的快速發展,環境污染日益嚴重。工業製造伴隨的主要污染物包括廢水、廢氣和噪音。其中排放含有多種重金屬廢水是引起水污染的主要原因,也是最嚴重的環境污染之一。重金屬污染的水將進一步影響人類生活所需的灌溉系統、食物和飲用水。水污染中常見的重金屬有鉛、汞、鎘、鉻和砷。汞離子很容易進入並在人體內累積,破壞內臟、骨骼、神經系統,甚至致癌。由於水、食物、甚至中藥材中的重金屬離子是無色無味的,因此在普通家庭中很難檢測到。
    檢測水中的汞含量常見的做法是取樣並使用大型的實驗儀器做檢測,儘管這些機台有很好的偵測極限,但這樣不但耗費時間而且並非所有人都會操作,而其他小型的檢測儀器未必有這麼好的偵測極限,因此透過實驗室的研究,將特定序列適體與擴展柵極的場效電晶體相結合,形成適體場效電晶體感測器,來同時獲得等同於或是優於實驗室大型設備的偵測極限以及小型的檢測儀器的高效跟方便可攜式的特點。


    With the rapid development of modern technology and industry, environmental pollution has become more and more serious. The main pollutants accompanied with industry including wastewater, exhaust gas, and noise. Among them, water pollution, which caused by wastewater contained many different heavy metals, is one of the most serious environmental pollution. Heavy metal contaminated water will further affect the irrigation system, food, and drinking water needed in human life. The heavy metals commonly observed in water pollution are lead, arsenic, cadmium, chromium, and mercury. Mercury ion can easily enter and accumulate in human body, resulting in destroying the internal organs, bones, nervous system, and even causing cancer. However, it is hard to detect in ordinary households due to the features of colorless and tasteless of heavy metal ions in water, food, or even traditional Chinese herbal medicine. The extended gate aptamer-based FET sensor provides a simple operation and a cheap machine and a good performance in detecting mercury ion. This research combines specific sequence aptamer with extended gate FET, and introducing the electric double layer structure attain efficient and good performance which is better than the equipment in the laboratory.

    摘要 ii ABSTRACT i CONTENTS ii LIST OF FIGURES iv LIST OF TABLES vii Chapter 1 Introduction 1 Motivation 1 Chapter 2 Literature Review 3 2.1 Mercury 3 2.2 Ion Detection Methods Comparison 7 2.3 DNA-based Sensor Type 9 2.4 Mercury Ion Selective Aptamer 12 2.5 Ion Selective FET (ISFET) 14 Chapter 3 Experimental 15 3.1 Chip Preparation and Surface Clean and Aptamer Immobilization 17 3.1.1 Chip deposition gold on sensor area 17 3.1.2 Coating the Chip with photoresist 17 3.1.3 Aptamer Probe Preparation 18 3.1.4 Chip surface clean 19 3.1.5 Immobilization 19 3.2 Measurement Method 20 3.3 Fluorescent Experimental 23 Chapter 4 Results and Discussion 24 4.1 Mechanism 24 4.2 Fluorescent signal and Electrical signal Result 27 4.2.1 Fluorescent signal Result 27 4.2.2 Electrical signal Result 31 4.2.3 Selectivity 39 Chapter 5 Summary and Future Work 41 References 43

    [1] L. Wang, Y.L. Yin, X.Z. Liu, P. Shen, Y.G. Zheng, X.R. Lan, C.B. Lu, J.Z. Wang, Current understanding of metal ions in the pathogenesis of Alzheimer's disease, Transl Neurodegener 9 (2020) 10.
    [2] A.A.A. Saad, A. El-Sikaily, H. Kassem, Essential, non-essential metals and human health, Blue Biotechnol. J. 3(4) (2014) 447-495.
    [3] M. Jaishankar, T. Tseten, N. Anbalagan, B.B. Mathew, K.N. Beeregowda, Toxicity, mechanism and health effects of some heavy metals, Interdisciplinary toxicology 7(2) (2014) 60.
    [4] G.A. Engwa, P.U. Ferdinand, F.N. Nwalo, M.N. Unachukwu, Mechanism and health effects of heavy metal toxicity in humans, Poisoning in the modern world-new tricks for an old dog 10 (2019).
    [5] D. Witkowska, J. Słowik, K. Chilicka, Heavy Metals and Human Health: Possible Exposure Pathways and the Competition for Protein Binding Sites, Molecules 26(19) (2021) 6060.
    [6] M. Balali-Mood, K. Naseri, Z. Tahergorabi, M.R. Khazdair, M. Sadeghi, Toxic mechanisms of five heavy metals: Mercury, Lead, Chromium, Cadmium, and Arsenic, Frontiers in pharmacology 12 (2021).
    [7] J.-b. Shi, C. Ip, W. Tang, G. Zhang, R.S. Wu, X.-d. Li, Spatial and temporal variations of mercury in sediments from Victoria Harbour, Hong Kong, (2007).
    [8] Y. Liu, L. Zhao, Y. Zhang, L. Zhang, X. Zan, Progress and Challenges of Mercury-Free Catalysis for Acetylene Hydrochlorination, Catalysts 10(10) (2020) 1218.
    [9] G. Bjørklund, M. Dadar, J. Mutter, J. Aaseth, The toxicology of mercury: Current research and emerging trends, Environmental research 159 (2017) 545-554.
    [10] J.S. Sevillano-Morales, M. Cejudo-Gomez, A.M. Ramírez-Ojeda, F.C. Martos, R. Moreno-Rojas, Risk profile of methylmercury in seafood, Current Opinion in Food Science 6 (2015) 53-60.
    [11] E.P.o.C.i.t.F. Chain, Scientific Opinion on the risk for public health related to the presence of mercury and methylmercury in food, Efsa Journal 10(12) (2012) 2985.
    [12] Y.-S. Hong, Y.-M. Kim, K.-E. Lee, Methylmercury exposure and health effects, Journal of Preventive Medicine and Public Health 45(6) (2012) 353.
    [13] K.M. Rice, E.M. Walker, Jr., M. Wu, C. Gillette, E.R. Blough, Environmental mercury and its toxic effects, J Prev Med Public Health 47(2) (2014) 74-83.
    [14] M.H. Keating, K. Mahaffey, R. Schoeny, G. Rice, O. Bullock, Mercury Study Report to Congress Office of Air Quality and Standards, Environmental Protection Agency, Research Triangle Park, NC, 1997.
    [15] National Primary Drinking Water Regulation Table.
    [16] WHO E13 guidelines drinking-water quality.
    [17] A.L. Suherman, K. Ngamchuea, E.E. Tanner, S.V. Sokolov, J. Holter, N.P. Young, R.G. Compton, Electrochemical detection of ultratrace (picomolar) levels of Hg2+ using a silver nanoparticle-modified glassy carbon electrode, Analytical chemistry 89(13) (2017) 7166-7173.
    [18] 中藥材含重金屬限量基準令全, https://dep.mohw.gov.tw/docmap/cp-890-15811-108.html, 全國法規資料庫(食安法)水產動物類衛生標準: https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=L0040088
    [19] S.M. Pyle, J.M. Nocerino, S.N. Deming, J.A. Palasota, J.M. Palasota, E.L. Miller, D.C. Hillman, C.A. Kuharic, W.H. Cole, P.M. Fitzpatrick, Comparison of AAS, ICP-AES, PSA, and XRF in determining lead and cadmium in soil, Environmental science & technology 30(1) (1995) 204-213.
    [20] E.P. Nardi, F.S. Evangelista, L. Tormen, T.D. Saint, A.J. Curtius, S.S. de Souza, F. Barbosa Jr, The use of inductively coupled plasma mass spectrometry (ICP-MS) for the determination of toxic and essential elements in different types of food samples, Food Chemistry 112(3) (2009) 727-732.
    [21] G. Tyler, S. Jobin Yvon, ICP-OES, ICP-MS and AAS Techniques Compared, ICP Optical Emission Spectroscopy Technical Note 5 (1995).
    [22] R.R. Breaker, DNA aptamers and DNA enzymes, Current opinion in chemical biology 1(1) (1997) 26-31.
    [23] T. Lan, Y. Lu, Metal ion-dependent DNAzymes and their applications as biosensors, Interplay between Metal Ions and Nucleic Acids (2012) 217-248.
    [24] K. Hwang, P. Hosseinzadeh, Y. Lu, Biochemical and biophysical understanding of metal ion selectivity of DNAzymes, Inorganica chimica acta 452 (2016) 12-24.
    [25] Y. Lu, New Transition‐metal‐dependent DNAzymes as efficient endonucleases and as selective metal biosensors, Chemistry–A European Journal 8(20) (2002) 4588-4596.
    [26] W. Hu, X. Min, X. Li, S. Yang, L. Yi, L. Chai, DNAzyme catalytic beacons-based a label-free biosensor for copper using electrochemical impedance spectroscopy, RSC advances 6(8) (2016) 6679-6685.
    [27] X. Zhang, C. Huang, Y. Jiang, Y. Jiang, J. Shen, E. Han, Structure-switching electrochemical aptasensor for single-step and specific detection of trace mercury in dairy products, Journal of agricultural and food chemistry 66(38) (2018) 10106-10112.
    [28] S.-e. Wang, S. Si, Aptamer biosensing platform based on carbon nanotube long-range energy transfer for sensitive, selective and multicolor fluorescent heavy metal ion analysis, Analytical methods 5(12) (2013) 2947-2953.
    [29] J. Tu, Y. Gan, T. Liang, Q. Hu, Q. Wang, T. Ren, Q. Sun, H. Wan, P. Wang, Graphene FET Array Biosensor Based on ssDNA Aptamer for Ultrasensitive Hg2+ Detection in Environmental Pollutants, Front Chem 6 (2018) 333.
    [30] M. Sauer, Single-molecule-sensitive fluorescent sensors based on photoinduced intramolecular charge transfer, Angew Chem Int Ed Engl 42(16) (2003) 1790-3.
    [31] X. Zhang, C. Huang, Y. Jiang, Y. Jiang, J. Shen, E. Han, Structure-Switching Electrochemical Aptasensor for Single-Step and Specific Detection of Trace Mercury in Dairy Products, J Agric Food Chem 66(38) (2018) 10106-10112.
    [32] T. Dairaku, K. Furuita, H. Sato, J. Sebera, D. Yamanaka, H. Otaki, S. Kikkawa, Y. Kondo, R. Katahira, F. Matthias Bickelhaupt, C. Fonseca Guerra, A. Ono, V. Sychrovsky, C. Kojima, Y. Tanaka, Direct detection of the mercury-nitrogen bond in the thymine-Hg(II)-thymine base-pair with (199)Hg NMR spectroscopy, Chem Commun (Camb) 51(40) (2015) 8488-91.
    [33] Ion-sensitive field effect transistor (ISFET) for MEMS multisensory chips at RIT.
    [34] Aptamer-Based Electrochemical Sensors with Aptamer−Complementary DNA Oligonucleotides as Probe.
    [35] F. Long, A. Zhu, H. Shi, H. Wang, J. Liu, Rapid on-site/in-situ detection of heavy metal ions in environmental water using a structure-switching DNA optical biosensor, Sci Rep 3 (2013) 2308.
    [36] X. Tang, H. Liu, B. Zou, D. Tian, H. Huang, A fishnet electrochemical Hg2+ sensing strategy based on gold nanoparticle-bioconjugate and thymine-Hg2+-thymine coordination chemistry, Analyst 137(2) (2012) 309-11.

    QR CODE