簡易檢索 / 詳目顯示

研究生: 胡元國
Yuan-Guo Hu
論文名稱: 開關磁阻馬達之前端轉換器開發
DEVELOPMENT OF FRONT-END CONVERTER AND AUTOMATIC COMMUTATION TUNING CONTROL STUDY FOR SWITCHED RELUCTANCE MOTOR
指導教授: 廖聰明 博士
Dr. Chang-Ming Liaw
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 191
中文關鍵詞: 開關磁阻馬達前端轉換器開發
外文關鍵詞: SWITCHED RELUCTANCE MOTOR
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 開關磁阻馬達之驅動特性及轉矩產生能力受許多關鍵因素之影響,如線圈電流波形、換相激磁行為及動態控制。本論文旨在建構一具前端轉換器之數位訊號處理器為主開關磁阻馬達驅動系統,及從事換相控制策略研究以改善其驅動特性。一般認知,直流鏈增壓是改善馬達於高速驅動下線圈電流響應之最佳方法。□達此目的,本論文開發出一置於馬達驅動器及電池間之前端直流轉換器,除增壓外,此轉換器也可操控成降壓式切換式整流器對電瓶充電。在兩個工作模態下之電路及控制器分析與設計於文中均有詳細說明。實測結果顯示所設計之前端轉換器可從事動態增壓而增進線圈在高速下之電流響應,進而增進馬達之速度動態響應特性。而此前端轉換器操作於切換式整流器時,亦可得到良好之輸出電壓調節特性及線電流入電電力品質。
    而在換相調控的研究上,本論文提出三種換相控制的方法,包含截止角固定導通角前移;導通角固定截止角後移;及導通角與截止角同時前移等。對於所有的調控方法,均詳細從事其理論之分析推導、調控機構之設計與實現、以及實測之效能評估。最後由所得之分析及實測經驗,研擬ㄧ自動調控技巧以等值得到開關磁阻馬達之最大轉矩/電流比。
    而在速度控制之改善研究上,由步級響應法估測得到開關磁阻馬達驅動系統於正常工作情況下之動態模式。接著研擬一具雙可調度之速度控制機構,其係由一比例積分□授控制器及一強健擾動前向控制器所組成。□授控制器先設計以滿足所欲之命令追蹤響應,而負載擾動及系統參數變化效應由強健控制器調控。結果顯示所設計之速度控制器具有良好之命令追蹤及負載調節特性,且所得性能具有強健性。


    It is known that the driving performances and torque generating capability of a switched reluctance motor (SRM) are significantly affected by many key factors, such as winding current waveform, commutation behavior and dynamic control. This thesis is mainly concerned with the development of a DSP-based SRM drive with front-end converter and its driving performance improvement via commutation controls. As generally recognized, DC-link voltage boosting is the most effective means in improving the winding current response during high speeds. To achieve this, a front-end DC/DC converter placed between battery and SRM drive is developed in this thesis. In addition to voltage boosting, this converter can also be operated as a buck-type switched-mode rectifier (SMR) to charge battery. The analysis and design of the convert circuits and control schemes in two operation modes are all performed in detail. The experimental results show that the winding current and speed dynamic response in high speeds can be much improved via the dynamic voltage boosting by the developed converter. And the SMR can also be normally operated with satisfactory performance in voltage regulation and line drawn current power quality.
    As to the commutation tuning control, this thesis performe the studies about three commutation instant tuning controls, including altered and fixed, fixed and receded, and and altered simultaneously. For all control approaches, the theoretical analysis, the tuning scheme and the experimental performance evaluation are all made. According to the analysis and experimental results, a heuristic algorithm is employed to find the optimal commutation advanced angle for achieving maximum torque per ampere equivalently.
    In treating the speed dynamic control, the dynamic model of the established SRM drive is first estimated at a chosen operating point. Then a 2DOF control scheme, consisting of a PI feedback controller and a disturbance robust feedforward controller, is designed and applied to let the SRM drive possess the quantitative and robust speed dynamic responses both in tracking and load regulation controls.

    誌謝 ……………………………………………………………… i 摘要 ……………………………………………………………… ii 目錄 ……………………………………………………………… iii 第一章、簡介 …………………………………………………… iv 第二章、所建立之數位驅動系統 ……………………………… v 第三章、動態控制 ……………………………………………… vi 第四章、前端轉換器 …………………………………………… vii 第五章、換相時刻調控 ………………………………………… viii 第六章、結論 …………………………………………………… ix 附錄:英文論文 ………………………………………………… x

    A. Fundamentals of SRM
    [1] W. F. Ray and R. M. Davis, “Inverter drive for doubly-salient reluctance motor,” IEE Proc. B, vol. 2, no. 6, pp. 185-193, 1979.
    [2] P. J. Lawrenson, J. M. Stephenson, P. T. Blenkinsop, J. Corda and N. N. Fulton, “Variable speed switched reluctance motors,” IEE Proc. Electric Power Applications, vol. 136, no. 4, pp. 253-265, 1980.
    [3] T. J. E. Miller, Switched Reluctance Motors Drives, Intertec Communications Inc., California, 1988.
    [4] H. H. Moghbelli and M. H. Rashid, “Performance review of the switched reluctance motor drives,” IEEE Proc. Circuits and Systems, vol. 1, pp. 162-165, 1991.
    [5] T. J. E. Miller, Switched Reluctance Motors and Their Control, Clarendon Press, Oxford, 1993.
    [6] H. C. Lovatt, M. C. Clelland and J. M. Stephenson, “Comparative performance of singly salient reluctance, switched reluctance and induction motors,” IEE Conf. Electrical Machines and Drives, pp. 361-365, 1997.
    [7] P. Pillay, Y. Liu, W. Cai and T. Sebastian, “Multiphase operation of switched reluctance motor drives,” IEEE Conf. Ind. Applicat., vol. 1, pp. 310- 317 , 1997.
    [8] M. T. DiRenzo, M. K. Masten and C. P. Cole, “Switched reluctance motor control techniques,” American Control Conference, vol. 1, pp. 272-277, June 1997.
    [9] H. A. Ashour, D. S. Reay and B. W. Williams, “Shunt-excited doubly salient 8/6-switched reluctance machine,” IEE Proc. Electric Power Applications , vol. 147, no. 5, pp. 391-401, 2000.
    [10] K. I. Hwu, Development of a switched reluctance motor drive, Ph.D. Dissertation, Deparment of Electrical Engineering, National Tsing Hua University, ROC, 2001.
    [11] T. J. E. Miller, “Optimal design of switched reluctance motors,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 15-27, 2002.
    B. Converters and Voltage Boosting Circuits
    [12] S. J. Watkins, J. Corda, and L. Zhang, “Multilevel asymmetric power converters for switched reluctance machines,” International Conference on Power Electronics, Machines and Drives, no. 487, pp. 195-200, 2002.
    [13] T. J. E. Miller, P. G. Bower, R. Becerra and M. Ehsani, “Four quadrant brushless reluctance motor drive,” IEE Conf. Power Electronics and Variable-Speed Drives, pp. 273-276, 1988.
    [14] S. Vukosavic and V. R. Stefanovic, “SRM inverter topologies: a comparative evaluation,” IEEE Trans. Ind. Applicat., vol. 27, no. 6, pp. 1034-1049, 1991.
    [15] A. M. Hava, V. Blasko and T. A. Lipo, “A modified C-dump converter for variable reluctance machines,” IEEE Trans. Ind. Applicat., vol. 28, no. 5, pp. 1017-1022, 1992.
    [16] S. Bolognani, E. Ognibeni and M. Zigliotto, “Sliding mode control of the energy recovery chopper in a C-dump switched reluctance motor drive,” IEEE Trans. Ind. Applicat., vol. 29, no.1, pp. 181-186, 1993.
    [17] S. Mir, I. Husain and M.E. Elbuluk, “Energy-efficient C-dump converters for switched reluctance motors,” IEEE Trans. Power Electron., vol. 12, pp. 912-921, 1997.
    [18] K. J. Tseng, S. Cao and J. Wang, “A new hybrid C-dump and buck-fronted converter for switched reluctance motors,” IEEE Trans. Ind. Electron., vol. 47, no. 6, pp. 1228-1236, 2000.
    [19] K. D. Kim, D. J. Shin and U. Y. Huh, “Application modified C-dump converter for industrial low voltage SRM,” IEEE International Symposium on Industrial Electronics, vol. 3, pp. 1804-1809, 2001.
    [20] V. V. Deshpande and Y. L. Jun, “New converter configurations for switched reluctance motors wherein some windings operate on recovered energy,” IEEE Trans. Ind. Applicat., vol. 38, no. 6, pp. 1558-1565, 2002.
    [21] D. H. Jang, I. Husain and M. Ehsani, “Modified (n+1) switch converter for switched reluctance motor drives,” IEEE PESC, vol. 2, pp. 1121-1127, 1995.
    [22] L. Morel, H. Fayard, H. V. Fos, A. Galindo and G. Abba, “Study of ultra high speed switched reluctance motor drive,” IEEE Conf. Ind. Applicat., vol. 1, no. 1, pp. 87-92, 2000.
    [23] D. H. Jang, “The converter topology with half bridge inverter for switched reluctance motor drives,” IEEE International Symposium on Industrial Electronics, vol. 2, pp. 1387-1392, 2001.
    [24] S. Chan, “Performance enhancement of single-phase switched reluctance motor by DC link voltage boosting,” IEE Proc. Electric Power Applications, vol. 140, no. 5, pp. 316-322, 1993.
    [25] Y. G. Dessouky, B. W. Williams and J. E. Fletcher, “A novel power converter with voltage-boosting capacitors for a four-phase SRM drive,” IEEE Trans. Ind. Electron., vol. 45, no. 5, pp. 815-823, 1998.
    [26] A. Dahmane, F. Meebody and F. M. Sargos, “A novel boost capacitor circuit to enhance the performance of the switched reluctance motor,” IEEE PESC, vol. 2, pp. 844-849, 2001.
    [27] M. Barnes and C. Pollock, “Forward converters for dual voltage switched reluctance motor drives,” IEEE Trans. Power Electron., vol. 16, no. 1, pp. 83-91, 2001.
    C. Modeling for SRM
    [28] L. Xu and E. Ruckstadter, “Direct modeling of switched reluctance machine by coupled field-circuit method,” IEEE Trans. Energy Conversion, vol. 10, no. 3, pp. 446-454, 1995.
    [29] O. Ichinokura, T. Onda, M. Kimura, T. Watanabe, T. Yanada and H. J. Guo, “Analysis of dynamic characteristics of switched reluctance motor based on SPICE,” IEEE Trans. Magnetics, vol. 34, pp. 2147-2149, 1998.
    [30] N. J. Nagel and R. D. Lorenz, “Modeling of a saturated switched reluctance motor using an operating point analysis and the unsaturated torque equation,” IEEE Trans. Ind. Applicat., vol. 36, pp. 714-722, 2000.
    [31] Shuyu Cao, and K.J. Tseng, “Evaluation of neighboring phase coupling effects of switched reluctance motor with dynamic modeling approach,” Power Electronics and Motion Control Conference, vol. 2, pp. 881-886, 2000.
    [32] V. Vujicic and S.N. Vukosavic, “ A simple nonlinear model of the switched reluctance motor,” IEEE Trans. Energy Conversion, vol. 15, no. 4, pp. 395-400, 2000.
    [33] B. C. Mecrow, C. Weiner and A. C. Clothier, “The modeling of switched reluctance machines with magnetically coupled windings,” IEEE Trans. Ind. Applicat., vol. 37, no. 6, pp. 1675-1683, 2001.
    [34] Shanshan Liu, Zhengming Zhao, Shuo Meng, Jianyun Chai, “A nonlinear analytical model for switched reluctance motor,” IEEE Region 10 Conference on Computers, Communications, Control and Power Engineering, vol. 3, pp. 2034-2037, 2002.
    [35] Xiaoyan Wang and Jih-Sheng Lai, “Small-signal modeling and control for PWM control of switched reluctance motor drives,” IEEE Power Electronics Specialists Conference, vol. 2, no. 1, pp. 546-551, 2002.
    [36] D. N. Essah and S. D. Sudhoff, “An improved analytical model for the switched reluctance motor,” IEEE Trans. Energy Conversion, vol. 18, no. 3, pp. 349-356, 2003.
    [37] B. P. Loop and S. D. Sudhoff, “Switched reluctance machine model using inverse inductance characterization,” IEEE Trans. Ind. Applicat., vol. 39, no. 3, pp. 743-751, 2003.
    [38] W. Lu, A. Keyhani and A. Fardoun, “Neural network-based modeling and parameter identification of switched reluctance motors,” IEEE Trans. Energy Conversion, vol. 18, pp. 284-290, 2003.
    [39] S. A. Hussain and I. Husain, “Modeling, simulation and control of switched reluctance motor drives,” IEEE IECON’03, vol. 3, pp. 2447-2452, 2003.
    [40] K. N. Srinivas and R. Arumugam, “Dynamic characterization of switched reluctance motor by computer-aided design and electromagnetic transient simulation,” IEEE Trans. Magnetics, vol. 39, no. 3, pp.1806-1812, 2003.
    [41] F.R. Salmasi and B. Fahimi, “Modeling Switched-Reluctance Machines by Decomposition of Double Magnetic Saliencies,” IEEE Trans. Magnetics, vol. 40, no. 3, pp. 1562-1572, 2004.
    D. Current Control
    [42] H. K. Bae and R. Krishnan, “A study of current controllers and development of a novel current controller for high performance SRM drives,” in Conf. Rec. IEEE-IAS Annu. Meeting, vol. 1, pp. 68-75, 1996.
    [43] F. Blaabjerg, P. C. Kjaer, P. O. Rasmussen and C. Cossar, “Improved digital current control methods in switched reluctance motor drives,” IEEE Trans. Power Electron., vol. 14, no. 3, pp. 563-572, 1999.
    [44] G.. Gallegos-Lopez, K. Rajashekara, “ Peak PWM current control of switched reluctance and AC machines” Industry Applications Conference, vol. 2, pp. 1212-1218, 2002.
    [45] R. B. Inderka, M. Menne, R. W. A. A. De Doncker, “Control of switched reluctance drives for electric vehicle applications” IEEE Trans. Industrial Electronics, vol. 49, pp. 48-53, 2002.
    [46] L. O. A. P. Henriques, P. J. C. Branco, L. G. B. Rolim and W. I. Suemitsu, “ Proposition of an off line learning current modulation for torque-ripple reduction in switched reluctance motors: design and experimental evaluation,” IEEE Trans. Ind. Electron., vol. 49, no. 3, pp. 665-676, 2002.
    [47] S. E. Schulz and K. M. Rahman, “High-performance digital PI current regulator for EV switched reluctance motor drives,” IEEE Trans. Ind. Applicat., vol. 39, no. 4, pp. 1118-1126, 2003.
    E. Speed Control
    [48] G. John and A. R. Eastham, “Speed control of switched reluctance motor using sliding mode control strategy,” Industry Applications Conference, vol. 1, pp. 263-270, 1995.
    [49] S. K. Panda and P. K. Dash, “Application of nonlinear control to switched reluctance motors: a feedback linearization approach,” IEE Proc. Electric Power Applications, vol. 143, no. 5, pp. 371-379, 1996.
    [50] S. K. Panda, X. M. Zhu and P. K. Dash, “Fuzzy gain scheduled PI speed controller for switched reluctance motor drive,” IEEE Proc. IECON’97, vol. 3, pp. 989-994, 1997.
    [51] T. S. Chuang and C. Pollock, “Robust speed control of a switched reluctance vector drive using variable structure approach,” IEEE Trans. Ind. Electron., vol. 44, no. 6, pp. 800-808, 1997.
    [52] B. Singh, V. K. Sharma and S. S. Murthy, “Performance analysis of adaptive fuzzy logic controller for switched reluctance motor drive system,” IEEE IAS’98, vol. 1, pp. 571-579, 1998.
    [53] K. I. Hwu and C. M. Liaw, “Robust quantitative speed control of a switched reluctance motor,” IEE Proc. Electric Power Applications, vol. 148, no. 4, 2001.
    [54] J. Y. Seo, H. R. Cha, H. Y. Yang, J. C. Seo, K. H. Kim, Y. C. Lim and D. H. Jang, “Speed control method for switched reluctance motor drive using self-tuning of switching angle,” IEEE International Symposium on Industrial Electronics, vol. 2, pp. 811-815, 2001.
    [55] K. I. Hwu and C. M. Liaw, “Quantitative speed control for SRM drive using fuzzy adapted inverse model,” IEEE Trans. Aerosp. Electron. Syst., vol. 38, no. 3, pp. 955-968, 2002.
    [56] C. Visa, G. Abba and F. Leonard, “Speed control of a switched reluctance motor using non-linear methods,” IEEE Conf. Syst., Man, Cybern., vol. 5, pp. 1-6, 2002.
    [57] F. Nekoogar and G. Moriarty, Digital Control using Digital Signal Processing, Prentice Hall PTR, New Jersey, 1999.
    [58] J. G. Bollinger and N. A. Duffie, Computer Control of Machines and Processes, Addison-Wesley, Massachusetts, 1988.
    [59] G. F. Franklin, J. D. Powell, and M. L. Workman, Digital Control of Dynamic Systems, 2nd Edition, Addison Wesley, New York, 1990.
    F. Commutation Tuning
    [60] D. A. Torrey and J. H. Lang, “Optimal-efficiency excitation of variable- reluctance motor drives,” IEE Proc. Electric Power Applications, vol. 138, no. 1, pp. 1-14, 1991.
    [61] P. C. Kjaer, P. Nielsen, L. Andersen and F. Blaabjerg, “A new energy optimizing control strategy for switched reluctance motors,” IEEE Trans. Ind. Applicat., vol. 31, no. 5, pp. 1088-1095, 1995.
    [62] A. V. Rajarathnam, B. Fahimi and M. Ehsani, “Neural network based self-tuning control of a switched reluctance motor drive to maximize torque per ampere,” IEEE IAS’97, vol. 1, pp. 548-555, 1997.
    [63] P. Tandon, A. Velayutham Rajarathnam and M. Ehsani, “Self-tuning control of a switched-reluctance motor drive with shaft position sensor,” IEEE Trans. Ind. Applicat., vol. 33, no. 4, pp. 1002-1010, 1997.
    [64] B. Fahimi, G. Suresh, J. P. Johnson, M. Ehsani, M. Arefeen and I. Panahi, “Self-tuning control of switched reluctance motors for optimized torque per ampere at all operating points,” IEEE Proc. APEC’98, vol. 2, pp. 778-783, 1998.
    [65] J. J. Gribble, P. C. Kjaer and T. J. E. Miller, “Optimal commutation in average torque control of switched reluctance motors,” IEE Proc. Electric Power Applications, vol. 146, no. 1, pp. 2-10, 1999.
    [66] C. Mademlis and I. Kioskeridis, “Performance optimization in switched reluctance motor drives with online commutation angle control,” IEEE Trans. Energy Conversion, vol. 18, no. 3, pp. 448-457, 2003.
    [67] A. M. Omekanda, “A new technique for multidimensional performance optimization of switched reluctance motors for vehicle propulsion,” IEEE Trans. Ind. Applicat., vol. 39, no. 3, pp. 672-676, 2003.
    [68] H. E. Akhter, V. K. Sharma, A. Chandra and K. Al-Haddad, “Modeling simulation and performance analysis of switched reluctance motor operating with optimum value of fixed turn-on and turn-off switching angles,” IEEE Power Electronics Specialist Conf., vol. 1, pp. 397-402, 2003.
    [69] Y. Sozer, D.A. Torrey and E. Mese, “Automatic control of excitation parameters for switched-reluctance motor drives,” IEEE Trans. Power Electronics, vol. 18, no. 2, pp. 594-603, 2003.
    [70] K.I. Hwu and C.M. Liaw, “Intelligent tuning of commutation for maximum torque capability of a switched reluctance motor,” IEEE Trans. Energy Conversion, vol. 18, no. 1, pp. 113-120, 2003.
    [71] R. Orthmann and H.P. Schoner, “Turn-off angle control of switched reluctance motors for optimum torque output,” Fifth European Conference on Power Electronics and Applications, vol. 6, pp. 20-25, 1993.
    [72] M. Rodrigues, P. J. Costa Branco and W. Suemitsu, “Fuzzy logic torque ripple reduction by turn-off angle compensation for switched reluctance motors,” IEEE Trans. Ind. Electron., vol. 48, pp. 711-715, 2001.
    [73] H. E. Akhter, V. K. Sharma, A. Chandra and K. Al-Haddad, “Starting performance of switched reluctance motor with fixed turn-off angle control scheme,” IECON 02, vol. 2, pp. 1020-1025, 2002.
    [74] J. P. Hong, B. S. Choi, S. J. Park, S. J. Kwon and M. H. Lee, “Switching angle control of the SRM for maximization of energy conversion ratio,” IEEE/ASME International Conference on Advanced Intelligent Mechatronics, vol. 2 , pp. 1151-1159, 2003.
    G. Current Profiling
    [75] R. S. Wallace and D. G. Taylor, “A balanced commutator for switched reluctance motors to reduce torque ripple,” IEEE Trans. Power Electron., vol. 7, no. 4, pp. 617–626, July 1992.
    [76] I. Husain and M. Ehsani, “Torque ripple minimization in switched reluctance motor drives by PWM current control,” IEEE Trans. Power Electron., vol. 11, no. 1, pp. 83-88, 1996.
    [77] H. C. Lovatt and J. M. Stephenson, “Computer-optimised smooth-torque current waveforms for switched-reluctance motors,” IEE Proc. Electric Power Applications, vol. 144, no. 5, pp. 310-316, 1997.
    [78] S. Mir, M. E. Elbuluk and I. Husain, “Torque-ripple minimization in switched reluctance motors using adaptive fuzzy control,” IEEE Trans. Ind. Applicat., vol. 35, no. 2, pp. 461-468, 1999.
    [79] L. O. A. P. Henriques, L. G. B. Rolim, W. I. Suemitsu, P. J. C. Branco and J. A. Dente, “Torque ripple minimization in a switched reluctance drive by neuro-fuzzy compensation,” IEEE Trans. Magnetics, vol. 36, no. 5, pp. 3592- 3594, 2000.
    [80] K. Russa, I. Husain and M. E. Elbuluk, “A self-tuning controller for switched reluctance motors,” IEEE Trans. Power Electron., vol. 15, no. 3, pp. 545- 552, 2000.
    [81] I. Agirman, A. M. Stankovic, G.. Tadmor and H. Lev-Ari, “Adaptive torque- ripple minimization in switched reluctance motors,” IEEE Trans. Ind. Electron., vol. 48, no. 3, pp. 664-672, 2001.
    [82] I. Husain, “Minimization of torque ripple in SRM drives,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 28-39, 2002.
    [83] P. L. Chapman and S. D. Sudhoff, “Design and precise realization of optimized current waveforms for an 8/6 switched reluctance drive,” IEEE Trans. Power Electron., vol. 17, no. 1, pp. 76-83, 2002.
    [84] C. Choi, S. Kim; Y. Kim and K. Park, “A new torque control method of a switched reluctance motor using a torque-sharing function,” IEEE Trans. Magnetics, vol. 38, no. 5,pp.3288-3290, 2002.
    H. Front-End Converter
    [85] G.. A. Garvelis, S. N. Manias and G.. Kostakis, “A DC-DC boost converter with short circuit protection,” IEEE IECON '94, vol. 1, pp. 238-243, 1994.
    [86] K. I. Hwu and C. M. Liaw, “ DC-link voltage boosting and switching control for switched reluctance motor drives,” IEE Proc. Electric Power Applications, vol. 147, no. 5, pp. 337-344, 2000.
    [87] F. Caricchi, F. Crescimbini, G. Noia and D. Pirolo, “Experimental study of a bidirectional DC-DC converter for the DC link voltage control and the regenerative braking in PM motor drives devoted to electrical vehicles,” IEEE APEC’94, vol. 1, pp. 381-389, 1994.
    [88] F. Caricchi, F. Crescimbini and A. D. Napoli, “20kW water-cooled prototype of a buck-boost bidirectional DC-DC converter topology for electrical vehicle motor drives,” IEEE APEC’95, pp. 887-892, 1995.
    [89] F. Caricchi, F. crescimbini, F. G. Capponi and L. Solero, “Study of bi-directional buck-boost converter topologies for application in electrical vehicle motor drives,” IEEE APEC’98, vol. 1, pp. 287-293, 1998.
    [90] P. T. Tsai, Development of Front-End Converter and Driving Performance Improvement for Switched Reluctance Motor, Master Thesis, Department of Electrical Engineering, National Tsing Hua University, ROC, 2003.
    I. Switch-Mode Rectifier
    [91] C. M. Liaw, T. H. Chen and W. L. Lin, “Dynamic modelling and control of a step up/down switching-mode rectifier,” IEE Proc. Electric Power Applications, vol. 146, no. 3, pp. 317-324, 1999.
    [92] L. Dixon, “High power factor switching pre-regulator design optimization,” Unitrode Power Supply Design Seminar SEM-700, pp. 7/1-7/2, 1990.
    [93] A. Kandianis and S. N. Manias, “A comparative evaluation of single-phase SMR converters with active power factor correction,” IECON Industrial Electronics, Control and Instrumentation Conference, pp. 244-249, 1994.
    [94] J. Sebastian, M. Jaureguizar and M. Uceda, “An overview of power factor correction in single-phase off-line power supply systems,” IECON Industrial Electronics, Control and Instrumentation Conference, vol. 3, pp. 1688-1693, 1994.
    [95] M.C. Ghanem, K. Al-haddad and G. Roy, “A new control strategy to achieve simusoidal line current in a cascade buck-boost converter,” IEEE Trans. Ind. Electron., vol. 43, no. 3, pp. 441-449, 1996.
    [96] J. Cardesin, J. Sebastian, P. Villegas, A. Hernando and A. Fernandez, “Average small-signal model of buck converter used as power factor preregulator,” IEEE Industry Applications Conference, vol. 3, pp. 2147-2157, 2002.
    [97] N. Mohan, T.M. Undeland and W.P. Robbins, Power Electronics: Converters, Applications and Design, 3rd edition, Wiley, 2003.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE