簡易檢索 / 詳目顯示

研究生: 張凱鈞
Chang, Kai-Chun
論文名稱: 爐管與烤箱退火修復氧化鋁薄膜製作穿隧氧化層鈍化接觸結構單晶矽太陽能電池之研究
TOPCon Solar Cell with Aluminum Oxide Film Recovery by Oven and Furnace Annealing
指導教授: 王立康
Wang, Li-Karn
口試委員: 陳昇暉
Chen, Sheng-Hui
李明昌
Lee, Ming-Chang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2024
畢業學年度: 113
語文別: 中文
論文頁數: 67
中文關鍵詞: 太陽能電池氧化鋁薄膜電性量測
外文關鍵詞: TOPCon
相關次數: 點閱:66下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近幾年N型基板慢慢取代了傳統的P型基板,也出現了許多新的結構,取代了舊有的主流結構,而又以市面上最為主流的架構TOPCon為最多使用,在各層中不同參數的改變,會出現不同的差異。而本篇論文為製作TOPCon太陽能電池。我們會以利用烤箱跟爐管做氧化鋁退火達成鈍化效果比較以及改變氮化矽層厚度,也會和非TOPCon架構的片子進行比較,來驗證我們的結構可以有效提升太陽能電池效率。氮化矽這層為抗反射塗層、表面鈍化、保護層功用,氧化鋁鈍化層提供鈍化效果,最終將效率等太陽能電池參數提升為目的,又可以延續本實驗室目標,以降低時間金錢成本為重要,在量產上也有優勢。
    此實驗一開始我們使用N型矽基板(N-type)裸片來製作。經過沉積tunnel oxide、poly- Si、Al2O3、再經過退火、離子佈植等製程,會先比較製作氧化鋁退火不同儀器下的表現,再以表現較佳儀器製作接續探討太陽能電池背面的氮化矽(SiNx),使用PECVD沉積不同厚度的SiNx。我們會比較後厚度對於參數影響。在後續製成元件後,使用EDS、TEM量測來看各層成分的組成以及結構,各種儀器量測各項所需參數。我們使用最佳製程為使用爐管氧化鋁退火,沉積SiNx:100nm。得出的TOPCon太陽能電池,其最佳填充因子為59.7%、轉換效率為15.163%。


    In recent years, N-type substrates have gradually replaced traditional P-type substrates, leading to the emergence of various new structures, with TOPCon being the most widely used structure in the industry. Different parameters in each layer can result in varying performance, and this paper focuses on the fabrication of TOPCon solar cells. Our goal is to enhance solar cell parameters such as efficiency by utilizing an oven and furnace tubes for aluminum oxide annealing to achieve passivation, by adjusting the thickness of the silicon nitride (SiNx) layer. This layer serves as an anti-reflective coating, surface passivation, and protective layer, and aligns with our lab's objective to minimize time and cost, which is beneficial for mass production.

    The experiment begins by using bare N-type silicon wafers. Through processes such as the deposition of tunnel oxide, poly-Si, Al2O3, followed by annealing, ion implantation, and other steps, we first compare the performance of aluminum oxide annealing using different equipment. After determining the best-performing equipment, we proceed to study the effect of varying the thickness of the rear SiNx layer, which is deposited using PECVD. We will compare how thickness influences various parameters. After fabricating the final device, we use EDS and TEM to measure the composition and structure of each layer. The best result was achieved using furnace tube annealing for Al2O3 and 100nm SiNx deposition. The TOPCon solar cell produced had a fill factor of 59.7% and a conversion efficiency of 15.163%.

    第1章 導論 1 1.1前言 1 1.2文獻回顧及發展 1 1.2-1太陽能電池架構 1 1.2-2 TOPCon 6 1.2-3氧化鋁鈍化層 10 1.3研究目的與動機 11 1.4論文架構 11 第2章 太陽能電池基礎原理 12 2.1半導體元件物理 12 2.1-1固體結晶形式 12 2.1.2 p-n接面 13 2.2矽晶太陽能電池基本原理 14 2.2-1太陽能電池原理 14 2.2-2太陽能電池等效電路 15 2.2-3太陽能電池參數 17 2.2-4氧化鋁鈍化 21 2.2-5穿隧氧化鈍化層結構 22 2.2-6 磷參雜多晶矽層(n+ poly-Si) 23 第3章 研究方法與製作步驟規劃 24 3.1實驗架構和元件製作步驟 24 3.2-1元件製作流程 25 3.2-2元件結構圖 26 3.3實驗步驟 27 3.3-1 RCA Clean 27 3.3-2 SiOx & Poly-Si製程 28 3.3-3 硼離子佈植(Boron Ion Implantation) 29 3.3-4 硼退火(Annealing) 29 3.3-5 磷離子佈植(Phosphorus Ion Implantation) 30 3.3-6 磷退火(Annealing) 30 3.3-7 蒸鍍鋁(E-gun Al) 31 3.3-8 氧化(Oxidation) 31 3.3-9 退火(Annealing) 31 3.3-10 氮化矽層(SiNx) 32 3.3-11 退火(Annealing) 32 3.3-12 網印電極(Screen Printing) 32 3.3-13共燒結(Co-firing) 33 3.4儀器介紹 34 第4章 實驗數據討論 41 4.1不同儀器進行氧化鋁退火之影響 41 4.2不同厚度氮化矽層之影響 42 4.3 TEM&EDS量測 43 4.3-1 tunnel oxide 43 4.3-2 Al2O3 layer 45 4.4 C-V 量測 47 4.5 Suns-Voc 量測 51 4.6 穿隧氧化鈍化層結構之分析 55 第5章總結 56 參考文獻 58 附錄 65

    [1] Martin A. Green, “The Path to 25% Silicon Solar Cell Efficiency: History of Silicon Cell Evolution,” Progress in Photovoltaics: Research and Applications, vol.17, pp. 183~189, 2009.
    [2] Dibyendu Kumar Ghosh, Sukanta Bose, Gourab Das, Shiladitya Acharyya,
    Anupam Nandi, Anindita Sengupta, and Sumita Mukhopadhyay,” Fundamentals, present status and future perspective of TOPCon solar cells: a comprehensive review,” Surfaces and Interfaces, vol.30, 2022,101917.
    [3] NERL Transforming Energy, “Best Research-Cell Efficiency Chart,” Retrieved from https://www.nrel.gov/pv/cell-efficiency.html
    [4] 能源知識庫:
    https://km.twenergy.org.tw/ReadFile/?p=KLBase&n=20190909104707.pdf
    [5] W. Cai, S. Yuan, Y. Sheng, W. Duan, Z. Wang, Z. Feng, and Y. Chen, “22.2% efficiency n-type PERT solar cell,” Energy Procedia, vol.93, pp. 399-403, 2016.
    [6] W. Luo, N. Chen, V. Shanmugam, X. Yan, S. Duttagupta, Y. S. Khoo, and Y. Wang, "Investigation of potential-induced degradation in bifacial n-PERL modules," IEEE Journal of Photovoltaics, vol 10, no.4, pp.935-939, 2020.
    [7] B. Kafle, B. S. Goraya, S. Mack, F. Feldmann, J. Rentsch, and S. Nold, "TOPCon–Technology options for cost efficient industrial manufacturing," Solar Energy Materials and Solar Cells, vol 227, 2021, 111100.
    [8] M. Taguchi, A. Yano, S. Tohoda, K. Matsuyama, Y. Nakamura, E. Maruyama, and T. Nishiwaki, "24.7% record efficiency HIT solar cell on thin silicon wafer," IEEE Journal of photovoltaics, vol 4, no.1, pp.96-99, 2013.
    [9] G. Galbiati, V. D. Mihailetchi, A. Halm, R. Kopecek, and R. Roescu, "Results on n-type IBC solar cells using industrial optimized techniques in the fabrication processing," Energy Procedia, vol 8, pp.421-426, 2011.
    [10] J. Nakamura, N. Asano, T. Hieda, C. Okamoto, K. Nakamura, and H. Katayama, "Development of heterojunction back contact Si solar cells," IEEE Journal of Photovoltaics, vol.4, no.6, pp.1491-1495, 2014.
    [11] F. Feldmann, M. Bivour, C. Reichel, S. W. Glunz, and M. Hermle, "A passivated rear contact for high-efficiency n-type silicon solar cells enabling high Vocs and FF> 82%," 28th European PV solar energy conference and exhibition, vol. 30, 2013.
    [12] https://zh-tw.solarpanelproductionline.com/knowledges/TOPCon-comprehensive-analysis.html
    [13] N. Folchert, R. Peibst, and R. Brendel, “Modeling recombination and contact resistance of poly-Si junctions,” Prog. Photovolt, Res. Appl, vol. 28, no. 12,
    pp. 1289–1307, Dec. 2020.
    [14] Balamou, Patrice, Heike Angermann, and Bert Stegemann, "Reduction of the interface defect density on crystalline silicon solar cell substrates by wet-chemical preparation of ultrathin SiOx passivation layers," 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC), IEEE, pp.1-5, 2015.
    [15] K. Koike, S. Ichimura, and A. Kurokawa, "Highly concentrated ozone gas supplied at an atmospheric pressure condition as a new oxidizing reagent for the formation of SiO2 thin film on Si," Journal of electronic materials, vol 31, pp.108-112, 2002.
    [16] L. Cvitkovich, D. Waldhör, A. M. El-Sayed, M. Jech, and C. Wilhelmer, "Dynamic modeling of Si (100) thermal oxidation: Oxidation mechanisms and realistic amorphous interface generation," Applied Surface Science, vol. 610, 2023, 155378.
    [17] I. Vickridge, J. Ganem, I. Trimaille, and Y. Hoshino, "Growth of SiO2 on SiC by dry thermal oxidation: mechanisms," Journal of Physics D: Applied Physics,
    vol 40, no.20, 2007, 6254.
    [18] G. Lucovsky, Y. Ma, and T. Yasuda, "Formation of Si/SiO2 Heterostructures by Low-Temperature, Plasma-Assisted Oxidation and Deposition Processes," The Physics and Chemistry of SiO2 and the Si-SiO2 Interface, vol 2, pp.145-156, 1993.
    [19] H. Jung, W. H. Kim, I. K. Oh, C. W. Lee, C. Lansalot-Matras, and S. J. Lee, "Growth characteristics and electrical properties of SiO2 thin films prepared using plasma-enhanced atomic layer deposition and chemical vapor deposition with an aminosilane precursor," Journal of Materials Science, vol 51,
    pp.5082-5091, 2016.
    [20] Q. Wang, W. Wu, Y. Li, L. Yuan, S. Yang, and Y. Sun, "Impact of boron doping on electrical performance and efficiency of n-TOPCon solar cell," Solar Energy, vol 227, pp.273-291, 2021.
    [21] D. Chen, Y. Chen, Z. Wang, J. Gong, C. Liu, P. J. Verlinden, and Y. Zou, "24.58% total area efficiency of screen-printed, large area industrial silicon solar cells with the tunnel oxide passivated contacts (i-TOPCon) design," Solar Energy Materials and Solar Cells, vol 206, 2020, 110258.
    [22] Q. Wang, L. Yuan, L. Li, H. Peng, B. Li, N. Yuan, and A. Wang, "Boron tube diffusion process parameters for high-efficiency n-TOPCon solar cells with selective boron emitters," Solar Energy Materials and Solar Cells, vol 253, 2023, 112231.
    [23] R. Zhong, P. Padhamnath, W. J. Choi, Y. W. Ok, A. Rohatgi, and S. Dasgupta, "Detailed investigation of electrical and optical properties of textured n-type and roughened p-type tunnel oxide passivated contacts for screen-printed double-side passivated contact silicon solar cell application," Thin Solid Films, vol 783, 2023, 140046.
    [24] K. Madani, A. Rohatgi, B. Rounsaville, M. G. Kang, and H. E. Song, "Enhanced Stability of Exposed PECVD Grown Thin n+ Poly-Si/SiO x Passivating Contacts With Al2O3 Capping Layer During High Temperature Firing," IEEE Journal of Photovoltaics, vol 11, no.2, pp.268-272, 2020.
    [25] Hamchorom Cha and Hyo Sik Chang, "Passivation performance improvement of ultrathin ALD-Al2O3 film by chemical oxidation," Vacuum, vol 149,
    pp.180-184, 2018.
    [26] K. Madani, A. Rohatgi, B. Rounsaville, M. G. Kang, and H. E. Song, "Physical characterization of thin ALD–Al2O3 films," Applied Surface Science, vol 211, no.1-4, pp.352-359, 2003.
    [27] S. Miyajima, J. Irikawa, M. Konagai, and A. Yamada, "High quality aluminum oxide passivation layer for crystalline silicon solar cells deposited by parallel-plate plasma-enhanced chemical vapor deposition," Applied physics express, vol 3, no.1, 2009, 012301.
    [28] Tsu‐Tsung Li and Andres Cuevas, "Effective surface passivation of crystalline silicon by rf sputtered aluminum oxide," physica status solidi (RRL)–Rapid Research Letters, vol 3, no.5, pp.160-162, 2009.
    [29] T. Uchida, T. Kawaharamura, K. Shibayama, T. Hiramatsu, S. Fujita, and H. Orita, "Mist chemical vapor deposition of aluminum oxide thin films for rear surface passivation of crystalline silicon solar cells," Applied Physics Express, vol 7, no.2, 2014, 021303.
    [30] O. Schultz, A. Mette, and M. Hermle, "Thermal oxidation for crystalline silicon solar cells exceeding 19% efficiency applying industrially feasible process technology," Progress in Photovoltaics: Research and Applications, vol 16, no.4, pp.317-324, 2008.
    [31] Watanabe, Ryosuke, Mizuho Kawashima, and Yoji Saito, "Film properties of alumina passivation layer for silicon solar cells prepared by spin-coating method," Thin Solid Films, vol 590, pp.98-102, 2015.
    [32] 勞大耀,”單晶矽PERC太陽能電池之背面鈍化堆疊層最佳退火參數之研究,”國立清華大學碩士論文,2020.
    [33] 謝家倫,”原子層沉積三氧化二鋁/氮化矽雙層結構二次退火對PERC 太陽能電池效率影響,”國立清華大學碩士論文,2020.
    [34] 徐景暉,” 利用爐管燒結形成氧化鋁薄膜製作局部接觸單晶矽太陽能電池之研究,”國立清華大學碩士論文,2021.
    [35] 楊郁仁,” 含硝酸鋁與尿素溶液燃燒合成之氧化鋁鈍化層之PERC單晶矽太陽能電池,”國立清華大學碩士論文,2021.
    [36] D. A. Neamen, Semiconductor Physics and Devices, 4th ed, pp.394-400.
    [37] https://facts.net/science/chemistry/10-astonishing-facts-about-p-n-junction/
    [38] https://slidesplayer.com/slide/15403059/
    [39] https://theses.hal.science/tel-02295386v1/file/SETHI_Waleed_Tariq.pdf
    [40] https://physcourse.thu.edu.tw/~mengwen/exp-photonics/exp-photonics-PPTpdf/PPT-1091-108.pdf
    [41] 東海大學物理:太陽能電池:
    https://physcourse.thu.edu.tw/wp-content/uploads/sites/8/2018/09/%E5%A4%AA%E9%99%BD%E8%83%BD%E9%9B%BB%E6%B1%A0-0927new.pdf
    [42] Albadri and M. Abdulrahman, "Characterization of Al2O3 surface passivation of silicon solar cells," Thin Solid Films, vol 562, pp.451-455, 2014.
    [43] https://www.materialsnet.com.tw/DocView.aspx?id=11085
    [44] 能源知識庫:
    https://km.twenergy.org.tw/ReadFile/?p=KLBase&n=20221201083823.pdf
    [45] Y. Tao, V. Upadhyaya, A. Rohatgi, and K. Jones, "Tunnel oxide passivated rear contact for large area n-type front junction silicon solar cells providing excellent carrier selectivity," AIMS Materials Science, vol 3, no.1, pp.180-189, 2015.
    [46] 能源知識庫:
    https://km.twenergy.org.tw/ReadFile/?p=KLBase&n=20221201083823.pdf
    [47] R. T. Young, R. F. Wood, J. Narayan, C. W. White, and W. H. Christie, Pulsed laser techniques for solar cell processing, IEEE Transactions on Electron Devices, vol 27, no.4, pp.807-815, 1980.
    [48] 吳永俊太陽能電池課程,太陽能電池原理,國立清華大學.
    [49] https://www.researchgate.net/figure/The-process-of-ion-implantation_fig5_304222687
    [50] https://www.slideshare.net/slideshow/ion-implantation-vlsi/241024731
    [51] https://nanofc.web.nycu.edu.tw/%E4%BD%8E%E5%A3%93%E5%8C%96%E5%AD%B8%E6%B0%A3%E7%9B%B8%E6%B2%89%E7%A9%8D%E7%B3%BB%E7%B5%B1-low-pressure-chemical-vapor-deposition-lpcvd/
    [52] https://www.tsri.org.tw/tw/tech/equipment_hsinchu.jsp
    [53] https://ord.nycu.edu.tw/ord/ch/app/machine/view?module=corefacilities&id=1721&serno=451e23e9-9a10-4809-b115-763dd26984ab
    [54] https://www.tsri.org.tw/tw/tech/equipment_hsinchu.jsp
    [55] Jeong Kim, "Optimization of SiNx layer for solar cell using computational method," Current Applied Physics, vol 11, no.1, pp.39, 2011.
    [56] Jeong Kim, "Optimization of SiNx layer for solar cell using computational method," Current Applied Physics, vol 11, no.1, pp.39-40, 2011.
    [57] Jeong Kim,” Optimization of SiNx layer for solar cell using computational method, “Current Applied Physics, vol 11, no.1, pp.39-42, 2011.
    [58] M. Chu, M. Q. Khokhar, S. Han, F. Wang, M. P. Nguyen, J. Yi, and V. A. Dao, "Tunnel Oxide Thickness-Dependent Dominant Carrier Transport in Crystalline Silicon Solar Cells," Optical Materials, vol 154, 2024, 115711.
    [59] V. Naumann, M. Otto, R.B. Wehrspohn, and C. Hagendorf, “Chemical and structural study of electrically passivating Al2O3/Si interfaces prepared by atomic layer deposition,” J. Vac. Sci. Technol. vol 30, no.4, pp.106, 2012.
    [60] Y. Chen, D. Chen, C. Liu, Z. Wang, Y. Zou, and Y. He, "Mass production of industrial tunnel oxide passivated contacts (i‐TOPCon) silicon solar cells with average efficiency over 23% and modules over 345 W," Progress in Photovoltaics: Research and Applications, vol 27, no.10, pp.827-834, 2019.
    [61] S. Sadhukhan, S. Acharya, T. Panda, N. C. Mandal, S. Bose, and A. Nandi, "Detailed study on the role of nature and distribution of pinholes and oxide layer on the performance of tunnel oxide passivated contact (TOPCon) solar cell," IEEE Transactions on Electron Devices, vol 69, no.10, pp.5618-5623, 2022.
    [62] M. Chu, M. Q. Khokhar, S. Han, F. Wang, M. P. Nguyen, J. Yi, and V. A. Dao, "Tunnel Oxide Thickness-Dependent Dominant Carrier Transport in Crystalline Silicon Solar Cells," Optical Materials, vol 154,2024, 115711.
    [63] Q. Wang, W. Wu, Y. Li, L. Yuan, S. Yang, and Y. Sun, "Impact of boron doping on electrical performance and efficiency of n-TOPCon solar cell," Solar Energy, vol 227, pp.273-291, 2021.
    [64] Hamchorom Cha and Hyo Sik Chang, "Passivation performance improvement of ultrathin ALD-Al2O3 film by chemical oxidation," Vacuum, vol 149,
    pp.180-184, 2018.
    [65] V. Naumann, M. Otto, R.B. Wehrspohn, and C. Hagendorf, “Chemical and structural study of electrically passivating Al2O3/Si interfaces prepared by atomic layer deposition,” J. Vac. Sci. Technol, vol 30, no.4, pp.106, 2012.
    [66] David B. Williams and C. Barry Carter, in Transmission Electron Microscopy, Microscopy, part IV, Plenum Press, New York, 2007.
    [67] R. E. Lee, Scanning Electron Microscopy and X-Ray Microanalysis, PTR Prentice Hall, Englewood Cliffs, New Jersey, pp. 329-406, 1993.
    [68] https://www.istgroup.com/tw/tech_20240716-tem-eds-light-elements/
    [69] 葉昭輝VLSI Course,國立清華大學微電子工程, pp.3-22, 2023.
    [70] D. A. Neamen, Semiconductor Physics and Devices, 4th ed, pp.394-400.
    [71] Albadri and M. Abdulrahman, "Characterization of Al2O3 surface passivation of silicon solar cells," Thin Solid Films, vol 562, pp.451-455, 2014.
    [72] 謝家倫,”原子層沉積三氧化二鋁/氮化矽雙層結構二次退火對PERC 太陽能電池效率影響,”國立清華大學碩士論文,2020.
    [73] 勞大耀,”單晶矽PERC太陽能電池之背面鈍化堆疊層最佳退火參數之研究,”國立清華大學碩士論文,2020.
    [74] 楊郁仁,” 含硝酸鋁與尿素溶液燃燒合成之氧化鋁鈍化層之PERC單晶矽太陽能電池,”國立清華大學碩士論文,2021.
    [75] 徐景暉,” 利用爐管燒結形成氧化鋁薄膜製作局部接觸單晶矽太陽能電池之研究,”國立清華大學碩士論文,2021.
    [76] 能源知識庫:
    https://km.twenergy.org.tw/ReadFile/?p=KLBase&n=20190909104707.pdf
    [77] 胡家榮,”烤箱與爐管退火修復氧化鋁薄膜製作鈍化N型太陽能電池,”國立清華大學碩士論文,2024.

    QR CODE