簡易檢索 / 詳目顯示

研究生: 陳韋嶧
Chen, Wei-Yi
論文名稱: 晶片製程、電壓及溫度監測系統之建構及其數據分析
Implementation of A Measurement System for PVT Monitoring of an IC and Its Data Analysis
指導教授: 黃錫瑜
Huang, Shi-Yu
口試委員: 呂學坤
Lu, Shyue-Kung
李進福
Li, Jin-Fu
蒯定明
Kwai, Ding-Ming
周永發
Chou, Yung-Fa
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 29
中文關鍵詞: 監控系統製程、溫度、電壓晶片潛在性故障預測
外文關鍵詞: Monitoring System, PVT, potential PVT-induced failure
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著積體電路技術的發展演進,可靠度變成越來越受大家所重視的議題,尤其是一些與人身安全相關的應用,例如車用電子設備,生物醫療晶片等等,為了保證在這些應用領域的晶片能在其生命週期中正常的運作,晶片的可靠度分析變得越來越重要。而我們已知晶片的可靠度又受到製程、電壓、溫度等因素影響。為了能檢查出晶片所受到製程、電壓、溫度效應的影響程度,在我們實驗室先前已提出一套具溫度效應補償的線上測試方法(Temperature-aware online test method)。而在這篇論文當中,我們以FPGA為系統控制中心,建構了一套監測系統去測量埋入了我們設計的感測元件之測試電路量測晶片,之後透過使用之前所提出的溫度效應補償的線上測試方案,可以分析實際操作時晶片所受到的製程、電壓、溫度效應影響。有了這些量測所獲得的資訊後,我們便可以在晶片實際損壞之前,提前檢測出因製程、電壓、溫度效應而引發的潛在性故障,之後透過適應性電壓調節、線上修復或是手動更換零件等修補方式,希望可以縮短甚至是避免不必要的系統停機時間。我們將在這篇論文中使用此監測系統來展示埋入了我們所設計的監測電路的晶片所測量到的數據及其結果分析。並且將其應用延伸,透過我們所量測到的晶片狀況來評估此一測量系統之供應電壓源狀況,判斷是否有電源電量低下的問題。


    Reliability of an IC, concerning if an IC can function reliably over its designated lifetime in the field, has become more and more important in today’s safety-critical applications (e.g., automobile electronics, biomedical electronics and so on). It is known that reliability can be affected by PVT effects, (Process, Voltage and Temperature). These effects vary at different physical locations where an IC is operated. In order to verify the affect by PVT effects of an IC, temperature-aware online test method have been proposed previously. In this thesis, we propose a measurement system for PVT monitoring of an IC, through actually measure an IC which we insert monitors in it, we analysis the PVT effects of an IC in the field. With the obtained information, a potential PVT-induced failure can be alarmed in advance before it actually strikes, and thereby pre-cautious actions (such as adaptive voltage scaling, online repair, or even manual replacement) can be taken in advance to shorten or even avoid unnecessary system down time. A measurement system containing a test chip with the built-in design-for-monitoring circuitry will be used to demonstrate measurement data.

    Abstract..........................................i 摘要..............................................ii 致謝.............................................iii Content..........................................iv List of Figures..................................vi List of Tables.................................viii Chapter 1 Introduction............................1 1.1 Introduction..................................1 1.2 Thesis Organization...........................3 Chapter 2 Preliminaries...........................4 2.1 Ring-Oscillator Based Monitor.................4 2.2 Design-for-Monitoring for an IC...............6 2.3 Online Test Flow..............................7 2.4 ROCP Modeling.................................8 Chapter 3 Implement of Measurement System........10 3.1 Test Chip Design.............................10 3.2 Measurement System Architecture..............12 3.3 System Operating and Data Flow...............14 Chapter 4 Measurement Data Analysis..............15 4.1 Process Variation............................15 4.2 Temperature Tracking.........................17 4.3 VDD-drop Monitoring..........................20 4.4 Low-battery Detection........................24 Chapter 5 Conclusion.............................27 References.......................................28

    [1] R. Saleh, S. Z. Hussain, S. Rochel, and D. Overhauser, “Clock skew verification in the presence of IR-Drop in the power distribution network,” IEEE Trans. on Computer-Aided Design, vol. 19, No. 6, pp.635-644, 2000.
    [2] S. Pant, D. Blaauw, V. Zolotov, S. Sundareswaran, and R. Panda, “Vectorless Analysis of Supply Noise Induced Delay Variation,” Proc. of International Conference on Computer-Aided Design (ICCAD), pp 184-191, 2003.
    [3] C. Tirumurti, S. Kundu, S. K. Susmita, and Y. S. Change, “A Modeling Approach for Addressing Power Supply Switching Noise Related Failures of Integrated Circuits,” Proc. of Design, Automation and Test in Europe Conference (DATE), pp. 1078-1083, 2004.
    [4] F. Bao, M. Tehranippor, and H. Chen, “Worst-Case Critical-Path Delay Analysis Considering Power-Supply Noise,” Proc. of Asian Test Symposium (ATS), pp. 37-42, 2013.
    [5] C.-H. Hsu, S.-Y. Huang, D.-M. Kwai, and Y.-F. Chou, "Worst-Case IR-Drop Monitoring with 1GHz Sampling Rate," Proc. of VLSI Design, Automation, and Test (VLSI-DAT), (April 2013).
    [6] H.-X. Li, H.-C. Fu, S.-Y. Huang, J.-C. Jiang, D.-M. Kwai, and Y.-F. Chou, "Testing Power-Delivery TSVs," Proc. of Asian Symp. on Quality Electronic Design, Aug. 2015.
    [7] H.-C. Fu, S.-Y. Huang, D.-M. Kwai, and Y.-F. Chou, "Temperature-Aware Online Testing of Power-Delivery TSVs," Proc. of IEEE Int'l 3D System Integration Conf., TS10.3.1 - TS10.3.6, (Sept. 2015).
    [8] A. Muhtaroglu, G. Taylor, and T. Rahal-Arabi, “On-Die Droop Detector for Analog Sensing of Power Supply Noise,” IEEE J. of Solid-State Circuits, vol. 39, no. 4, pp. 651-660, April. 2004.
    [9] A. Sehgal, Peilin Song, and Keith A. Jenkins, “On-Chip Real-Time Power Supply Noise Detector,” Proc. of IEEE European Solid-State Circuits Conf., pp. 380-383, Sept. 2006.
    [10] R. Petersen, P. Pant, P. Lopez, A. Barton, J. Ignowski, and D. Josephson, “Voltage Transient Detection and Induction for Debug and Test,” Proc. of IEEE Int’l Test Conf., pp. 1-10, Nov. 2009.
    [11] Z. Abuhamdeh, P. Pears, J. Remmers, A. L. Crouch, and B. Hannagan, “Characterize Predicted vs. Actual IR Drop in a Chip Using Scan Clocks”, IEEE Proc. of Int’l Test Conference (ITC), PP. 1-8, Oct. 2006.
    [12] Z. Abuhamdeh, V. D'Alassandro, R. Pico, D. Montrone, A. Crouch, and A. Tracy, “Separating Temperature Effects from Ring-Oscillator Readings to Measure True IR-Drop On a Chip,” IEEE Proc. of Int’l Test Conference (ITC), pp. 1-10, Oct. 2007.
    [13] Y. Miura, Y. Sato, Y. Miyake, and S. Kajihara, "On-chip Temperature and Voltage measurement for Field Testing", Proc. of European Test Symp., pp. 28-31, 2012.
    [14] Y. Miyake, Y. Sato, S. Kajihara, and Y. Miura, “Temperature and Voltage Estimation Using Ring-Oscillator-Based Monitor for Field Test,” Proc. of Asian Test Symp., pp. 156-161, Nov. 2014.
    [15] C.-W. Tzeng, S.-Y. Huang, P.-Y. Chao, and R.-T. Ding, "Parameterized All-Digital PLL Architecture and Its Compiler to Support Easy Process Migration," IEEE Trans. on VLSI Systems (TVLSI), Vol. 22, No. 3, pp. 621-630, March 2014.

    無法下載圖示 全文公開日期 2022/08/15 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE