研究生: |
詹豐林 Feng-Lin Chan |
---|---|
論文名稱: |
使用電化學法配合互補式金屬氧化半導體電路之多巴胺定量感測器 An Electrochemical Dopamine Sensor with CMOS Detection Circuit |
指導教授: |
盧向成
Shiang-Cheng Lu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 64 |
中文關鍵詞: | 多巴胺 、帕金森氏症 、氧化還原法 、交叉電極感測器 、CMOS感測電路 、微機電技術 |
外文關鍵詞: | Dopamine, Parkinson's disease, Electrochemical Oxidation Reduction, IDA, CMOS, MEMS |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究目的在於如何製作出同時俱備即時監測、定量以及成本低廉之多巴胺(Dopamine)生醫感測晶片。一般咸信建立一個即時監測人體多巴胺濃度的硬體平台將有助於了解帕金森氏症(Parkinson's Disease)患者在接受治療後體內多巴胺改變的情況;有鑑於目前醫院所採用之高壓液相層析法(High Pressure Liquid Chromatography, HPLC)無法達到即時監測且儀器成本昂貴,因此本感測晶片採用電化學氧化還原法(Oxidation Reduction)來感測多巴胺。
論文中可以分成交叉電極(Interdigitated Array Electrodes, IDA Electrodes)感測器與互補式金屬氧化半導體(Complementary Metal Oxide Semiconductor, CMOS)感測電路兩個部份,我們使用微機電技術(Micro-Electro-Mechanical Systems, MEMS)將感測器製作在表面含有氮化矽(Silicon Nitride)的矽晶片上,多巴胺可藉由此晶片因電化學氧化還原反應產生訊號電流,我們再將此訊號電流經過互補式金屬氧化半導體感測電路放大並對電容充電轉換成電壓訊號,在相同的充電電壓下我們可以藉由不同的充電時間來讀出所感測之電流,最終便可換算出多巴胺濃度。
我們所設計的交叉電極感測器其感測度在2 µM的多巴胺下,可以產生0.88 nA的訊號電流;而在互補式金屬氧化半導體感測電路方面,其訊號電流動態感測範圍可從300 pA~300 nA,這代表此感測電路配合我們製作的感測器理論上可以感測之多巴胺濃度範圍是0.68 µM~680 µM。
[1] The Nobel Prize in Physiology or Medicine 2000.
http://nobelprize.org/nobel_prizes/medicine/laureates/2000/press.html
[2]http://life.nthu.edu.tw/~g864264/Neuroscience/Disorder/parkinson.htm #ther
[3] J.M. Bustillo and R.S. Muller, “Surface micromachining for microelectromechanical systems,” Proc. IEEE 86, pp. 1552-1574, 1998.
[4] J. H. Smith, S. Montague, J. J. Sniegowski, J. R. Murray, et al., “Embedded micromechanical devices for the monolithic integration of MEMS with CMOS,” in Proc. Int. Electron Devices Meeting, Washington, DC, Dec. 10-13, pp. 609-612, 1995.
[5] Zhang LH, Teshima N, Hasebe T, Kurihara M, Kawashima T., “Flow-injection determination of trace amounts of dopamine by chemiluminescence detection,” Talanta vol. 50, pp. 677-683, 1999.
[6] I. C. Vieira and O. Fatibello-Filho, “Pectrophotometric determination of methyldopa and dopamine in pharmaceutical formulations using a crude extract of sweet potato root (Ipomoea batatas (L.) Lam.) as enzymatic source,” Talanta, vol. 46, pp. 559-564, 1998.
[7] P. Nagaraja, R.A. Vasantha and K.R. Sunitha, “A sensitive and selective spectrophotometric estimation of catechol derivatives in pharmaceutical preparations,” Talanta, vol. 55, pp. 1039-1046, 2001.
[8] F. Musshoff, P. Schmidt, R. Dettmeyer, F. Priemer, K. Jachau, and B. Madea, “Determination of dopamine and dopamine-derived (R)-/(S)-salsolinol and norsalsolinol in various human brain areas using solid-phase extraction and gas chromatography/mass spectrometry,” Forensic Sci. Int., 113, pp. 359-366, 2000.
[9] T. J. Panholzer, J. Beyer, and K. Lictwald, “Coupled-column liquid chromatographic analysis of catecholamines, serotonin, and metabolites in human urine,” Clin Chem,45, pp. 262, 1999.
[10] M. A. Raggi, C. Sabbioni, G. Casamenti, G. Gerra, N. Calonghi, and L. Masotti, “Determination of catecholamines in human plasma by high-performance liquid chromatography with electrochemical detection,” J. Chromatogr. B, 730:201, 1999.
[11] B. A. Patel, M. Arundell, K. H. Parker, M. Yeoman, and D. O’Hare, “Simple and rapid determination of serotonin and catecholamines in biological tissue using high-performance liquid chromatography with electrochemical detection,” J. Chromatogr. B, 818, pp. 269-276, 2005.
[12] R. L. Aponte, J. A. Diaz, A. A. Pereira, and V. G. Diaz, “Simple thin layer chromatography method with fiber Optic remote sensor for fluorimetric Quantification of Tryptophan and Related Metabolites,” J. Liq Chromatogr. Relat. Technol. 19, pp. 687-698, 1996.
[13] A. Liu, I. Honma, and H. Zhou, “Electrochemical biosensor based on protein–polysaccharide hybrid for selective detection of nanomolar dopamine metabolite of 3,4-dihydroxyphenylacetic acid (DOPAC),” Electrochem. Commun., 7, pp. 233-236, 2005.
[14] P. R. Roy, T. Okajima, and T. Ohsaka, “Simultaneous electroanalysis of dopamine and ascorbic acid using poly (N,N-dimethylaniline)-modified electrodes,” Bioelectrochem., 59, pp. 11-19, 2003.
[15] M. Sotomayor, A. A. Tanaka, L. T. Kubota, “Development of an amperometric sensor highly selective for dopamine and analogous compounds determination using bis(2,2 -Bipyridil)copper(II)chloride complex,” Electroanalysis, 15, pp. 787-796, 2003.
[16] T. J. Castilho, M. Sotomayor, and L. T. Kubota, “Amperometric biosensor based on horseradish peroxidase for biogenic amine determinations in biological samples,” J. Pharm Biomed Anal, 37(4), pp. 785-791, 2005.
[17] K. Miyazaki, G. Matsumoto, M. Yamada, S. Yasui, and H. Kaneko, “Simultaneous voltammetric measurement of nitrite ion, dopamine, serotonin with ascorbic acid on the GRC electrode,” Electrochim Acta, 44, pp. 3809-3820, 1999.
[18] J. M. Zen and P. J. Chen, “An ultrasensitive voltammetric method for dopamine and catechol detection using clay-modified electrodes,” Electroanalysis, 10, pp. 12-15, 1998.
[19] J. M. Zen, W. M. Wang, and G. Ilangovan, “Adsorptive potentiometric stripping analysis of dopamine on clay-modified electrode,” Anal Chim Acta, 372, pp. 315-321, 1998.
[20] L. Gorton, E. Domı́nguez, “Electrocatalytic oxidation of NAD(P)H at mediator-modified electrodes,” Reviews in Molecular Biotechnology 82, pp. 371-392, 2002.
[21] M. Wei, M. Li, N. Li, Z. Gu, X. Duan,“Electrocatalytic oxidation of norepinephrine at a reduced c60-[dimethyl-(β-cyclodextrin)]2 and nafion chemically modified electrode,” Electrochim Acta 47, pp. 2673-2678, 2002.
[22] J. Wang, M. Li, Z. Shi, N. Li and Z. Gu, “Electrocatalytic oxidation of norepinephrine at a glassy carbon electrode modified with single wall carbon nanotubes,” Electroanalysis, vol. 14, pp. 225-230, 2002.
[23] M. D. Rubianes and G. A. Rivas, “Highly selective dopamine quantification using a glassy carbon electrode modified with a melanin-type polymer,” Anal Chim Acta, vol. 440, pp. 99-108, 2001.
[24] J. Wang and A. Walcarius, “Zeolite-modified carbon paste electrode for selective monitoring of dopamine,” J. Electroanal. Chem. vol. 407, pp. 183-187, 1996.
[25] Y. F. Tu and H. Y. Chen, “A nano-molar sensitive disposable biosensor for determination of dopamine,” Biosens. Bioelectron. vol. 17, pp. 19-24, 2002.
[26] J. W. Mo and B. Ogorevc, “Simultaneous measurement of dopamine and ascorbate at their physiological levels using voltammetric microprobe based on overoxidized poly(1,2-phenylenediamine)-coated carbon fiber,” Anal. Chem. vol. 73, pp. 1196-1202, 2001.
[27] S. M. Chen and K. C. Lin, “The electrocatalytic properties of biological molecules using polymerized luminol film-modified electrodes,” J. Electroanal. Chem. vol. 523, pp. 93-105, 2002.
[28] M Chicharro, A Sánchez, A Zapardiel, MD Rubianes, and G. Rivas, “Capillary electrophoresis of neurotransmitters with amperometric detection at melanin-type polymer-modified carbon electrodes,” Anal. Chim. Acta 523, pp. 185-191, 2004.
[29] R. Aguilar, M. M. Dávila, M.P. Elizalde, J. Mattusch and R. Wennrich, “Capability of a carbon–polyvinylchloride composite electrode for the detection of dopamine, ascorbic acid and uric acid,” Electrochim. Acta 49, pp. 851-859, 2004.
[30] S. M. Chen and K. T. Peng, “The electrochemical properties of dopamine, epinephrine, norepinephrine, and their electrocatalytic reactions on cobalt(II) hexacyanoferrate films,” J. Electroanal. Chem. vol. 547, pp. 179-189, 2003.
[31] F. Lisdat, U. Wollenberger, A. Makower, H. Hörtnagl, D. Pfeiffer, and F. W. Scheller, “Catecholamine detection using enzymatic amplification,” Biosens. Bioelectron. vol. 12, pp. 1199-1211, 1997.
[32] Cheng, F.-C. and Kuo, J.-S., “High-performance liquid chromatographic analysis with electrochemical detection of biogenic amines using microbore columns,” J. Chromatogr. B, vol. 665, pp. 1-13, 1995.
[33] R. Kurita, H. Tabei, Z. Liu, T. Horiuchi, and O. Niwa, “Fabri-cation and electrochemical properties of an interdigitated array electrode in a microfabricated wall-jet cell,” Sens. Actuators B, Chem., vol. B71, no. 1\-2, pp. 82-89, 2000.
[34] Skoog, D. A.; Holler, F. J.; Nieman, T. A. “Principles of Instrumental Analysis,” 5 th ed; Harcourt Brace College: USA, 1998.
[35] H. Suzuki, T. Hirakawa, S. Sakaki, and I. Karube, “An integrated three-electrode system with a micromachined liquid-junction Ag/AgCl reference electrode,” Anal. Chim. Acta, vol. 387, pp. 103-112, 1999.
[36] S.I. Park, S.B. Jun, S. Park, H.C. Kim and S.J. Kim, “Application of a new Cl-plasma-treated Ag/AgCl reference electrode to micromachined glucose sensor,” IEEE Sens. J. 3, pp. 267-273, 2003.
[37] B. J. Polk, A. Stelzenmuller, G. Mijares, W. MacCrehan, and M. Gaitan, “Ag/AgCl microelectrodes with improved stability for microfluidics,” Sensors and Actuators B: Chemical, vol. 114, pp. 239-247, 2006.
[38] R. Thewes et al, “Sensor arrays for fully electronic DNA detection on CMOS,” ISSCC, Digest of Tech. Papers, pp. 350-351, 2002.
[39] F. Hofmann, A. Frey, B. Holzapfl, M. Schienle, C. Paulus, P. Schindler-Bauer, D.D.J. Kuhlmeier, J. Krause, R. Hintsche, E. Nebling, J. Albers, W. Gumbrecht, K. Plehnert, G. Eckstein and R. Thewes, “Fully electronic DNA detection on a CMOS chip: device and process issues.” Tech. Dig., Int. Electron Devices Meet., pp. 488-491, 2002.
[40] M. Paeschke, U. Wollenberger, T. Lisec, U. Schnakenberg and R. Hintsche, “Highly sensitive electrochemical microsensors using submicrometer electrode arrays,” Sens. Actuators, B 26-27, pp. 394-397, 1995.
[41] K. Aoki, M. Morita, O. Niwa, H. Tabei, “Quantitative analysis of reversible diffusion-controlled currents of redox soluble species at interdigitated array electrodes under steady-state conditions,” J. Electroanal. Chem. vol. 256, 269±282, 1988.
[42] R. S. Muller and T. I. Kamins, “Device Electronics for Integrated Circuits,” 3 th ed; New York: Wiley, 2003.
[43] K.R. Williams, B. Adhyaru, I. German and T. Russell, ”Determination of a diffusion coefficient by capillary electrophoresis. An experiment for the physical and biophysical chemistry laboratories,” J. Chem. Educ.79, pp. 1475-1476, 2002.
[44] Y. Taur, T. H. Ning, “Fundamentals of Modern VLSI Devices,” Cambridge University Press, Cambridge 1998.
[45] M.J. Deen and Z.X. Yan, “Substrate bias effects on drain-induced barrier lowering inshort-channel PMOS devices,” Electron Devices, IEEE Transactions on., vol. 37, Issue: 7, pp. 1707-1713, Jul. 1990.