簡易檢索 / 詳目顯示

研究生: 許哲嘉
Hsu, Che-Chia
論文名稱: Studies of the interfacial structure and behavior of QWS for a well-ordered ultrathin film of tetratetracontane (n-C44H90; TTC)/Ag thin film/Ge(111) by ARPES
角解析光電子能譜研究TTC 於銀薄膜在鍺(111)基底上之介面結構及量子井態之行為
指導教授: 唐述中
Tang, Shu-Jung
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 73
中文關鍵詞: 角解析光電子能譜量子井態
外文關鍵詞: ARPES, QWS, TTC
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們利用角解析光電子能譜研究tetratetracontane (n-C44H90; TTC)在銀薄膜上量子井態的行為。我們發現在鍍上TTC之後,量子井態(Quantum-well state)會往費米能階平移,而此趨勢與真空態(Vacuum level)的平移趨勢相符合。量子井態些許地向費米能階平移代表費米面所包圍的面積縮小,亦即電子態密度減小。對於研究量子井態的行為更能夠合理地解釋電子在介面的行為,由於量子井態的波函數束縛在金屬薄膜內並不會受到有機薄膜的破壞,而所量測到的真空態平移為 -0.62 eV。我們提出一個模型來解釋此介面的機制,根據量子井態的變化以及真空態的平移,mirror force支配著介面的電荷分布,我們假設像電荷效應(Image charge effect) 發生在此介面。此外,我們也得到分子軌域的能帶色散(Energy band dispersion),我們觀察到分子內(Intra-molecular)以及分子間(Inter-molecular)能帶色散,與之前Ishii團隊所量測以及計算的相符合。此外,額外的能帶色散我們推測是由於TTC分子由於鍺基底的三軸對稱(Three-fold symmetry)而作60度角的排列而得到。


    We have investigated the quantum-well-state (QWS) behavior of Ag thin film with tetratetracontane (n-C44H90; TTC) deposited on top by angled-resolved photoemission spectroscopy (AR-PES). We found that QWS shift towards Fermi level and the trend is consistent with vacuum level (VL) shifts. The slight shift of QWS towards Fermi level means that the area of the Fermi surface enclosed by the QWS bands shrinks and consequently the occupied charge density should decrease. It is more reasonable to discuss the charge behaviors at the interface by the investigation of the behaviors of QWS. As the wave functions of QWS are confined within the metal film, they will not be destroyed after the deposition of organic thin films. We had measured the VL shift Δ, which is about - 0.62 eV. We bring up a model to explain the mechanism at the interface. According to the results of QWS change and VL shift, the mirror force seems to dominate the charge distribution and we can speculate that the image charge effect takes place at the interface. We also obtained the energy band dispersion of the occupied molecular orbital state. Both the inter-molecular and the intra-molecular band dispersions were observed, which are consistent with the previous calculated and measured results by Ishii et al. However, extra energy band dispersions were also observed possibly due to the TTC molecules aligning 60 degrees with the others as a result of three-fold symmetry of the Ge(111) symmetry.

    1.Introduction 2.Background Theory 2.1.Surface and Interface 2.1.1.Introduction 2.1.2.Two-dimensional Lattice and Reciprocal Space 2.2.Photoemission Spectroscopy (PES) 2.2.1.Introduction 2.2.2.Photoemission Process 2.2.3.Three-step Model 2.2.4.Angel-Resolved Photoemission Spectroscopy (AR- PES) 2.3.Electronic States 2.3.1.Surface State 2.3.2.Quantum Well State 2.3.3.Electronic Structure of an Organic Solid 2.4.Organic Material 2.4.1.Interface Dipole and Energy Level Alignment 2.4.2.Tetratetracontane (TTC) 3.Experimental Instruments and Techniques 3.1.Instrumental Setup and Experimental Process 3.1.1.Instrument Setup 3.1.2.Sample Preparation 3.1.3.Deposition of the Silver Films and TTC Films 3.2.Ultra-high Vacuum (UHV) Technology 3.2.1.Fundamental Concept of UHV Techniques 3.2.2.UHV Instruments and Procedures 3.3.Hemispherical Energy Analyzer 3.3.1.Introduction 3.3.2.Analyzer Modes 3.3.3.Energy Resolution 3.4.Residual Gas Analyzer (RGA) 3.4.1.Introduction 3.4.2.Conformation and Principle of RGA 3.5.Low-energy Electron Diffraction (LEED) 3.5.1.Introduction and the Kinematic Theory of Low- energy Electron Diffraction 3.5.2.Conformation and Opreation of LEED 3.6.Synchrotron Light Source 3.6.1.Introduction of Sunchrotron Radiation 3.6.2.Beam-line Specifications 4.Well-ordered Ultrathin Film of Tetratetracontane (n-C44H90; TTC)/Ag Thin Film/Ge(111) 4.1.Electronic Structure and Molecular Orientation 4.2.Band Dispersion 4.3.QWS Change 4.3.1.Analytic Methods 4.3.2.Results and Discussions 4.4.Vacuum Level Shift 4.4.1.Experiment and Analytic Methods 4.4.2.Results and Comparison 4.4.3.Coupling between QWS Changes and VL Shift 4.5.Model

    1. T.-C. Chiang, Surf. Sci. Rep. 39, 181 (2000)
    2. F. Krok, F. Buatier de Mongeot, M. Goryl, J. J. Kolodziej, and M. Szymonski, Phys. Rev. B 81, 235414 (2010)
    3. S.-J. Tang, W.-K. Chang, Y.-M. Chiu, H.-Y Chen, C.-M. Cheng, and K,-D. Tsuei, Phys. Rev. B 78, 245407 (2008)
    4. S.-J. Tang, T. Miller, and T.-C. Chiang, Phys. Rev. Lett. 96, 036802 (2006)
    5. H. Ishii, K. Sugiyama, E. Ito, and K. Seki, Adv. Mater. 11, 605 (1999)
    6. H. Ishii, E.Morikawa, S. J. Tang, D. Yoshimura, E. Ito, K. Okudaira, T. Miyamae, S. Hasegawa, P. T. Sprunger, N, Ueno, K. Seki, and V. Saile, J. Electron Spectrosc. Relat. Phenom. 101-103, 559-564 (1999)
    7. Charles Kittel, Introduction to Solid State Physics, J. Wiley
    8. Hans Luth, Surfaces and Interfaces of Solid Materials, Springer
    9. Stefan Hufner, Photoelectron Spectroscopy, Springer
    10.H. Hertz, Ann. Physik 31, 983 (1887) Springer
    11.I. Razado-Colambo, Jiangping He, H. M. Zhang, G. V. Hansson, and R. I. G. Uhrberg, Phys. Rev. B 75, 205410 (2009)
    12.M. Abe, Y. Sugimoto, S. Morita, Nanotechnology 16, S68-S72 (2005)
    13.J. A. Venables, Introduction to Surface and Thin Film Process, Cambridge University Press, Cambridge, United Kingdom, 2001
    14.User Manual SCIENTA R3000, VG SCIENTA
    15.User Manual SPECTRALEED, Omicron
    16.Operating Manual and Programming Refrence, Stanford Research Systems
    17.Andrew Zangwill, Physics at Surfaces
    18.M. H. Upton, Photoemission Studies of the Electronic Structure and Properties of Thin Lead Films, Ph.D. Thesis University of Illinois at Urbana-Champaign, 2005
    19.D. A. Ricci, Photoemission Studies of interface effects on thin film properties, Ph.D. Thesis University of Illinois at Urbana-Champaign, 2006
    20.J. Schwinger, Phys. Rev. 75, 1912 (1949)
    21.http://www.srrc.gov.tw/
    22.John F. Watts, John Wolstenholme, An Introduction to Surface Analysis by XPS and AES (1st ed.) Chichester, West Sussex, England ; New York : J. Wiley
    23.E. W. Plummer, W. Eberhardt, Angle-Resolved Photoemission as a Tool For The Study of Surfaces
    24.A. L. Wachs, T. Miller, T. C. Hsieh, A. P. Shapiro, and T.-C. Chang, Phys. Rev. B 32, 2326 (1985)
    25.K. Kanai, Y. Ouchi, K, Seki, Thin Solod Films 517, 3276-3280 (2009)
    26.F. Patthey, J.-M. Imer, W.-D. Schneider, H. Beck, and Y. Baer, Phys. Rev. B 42, 8864 (1990)
    27.Rene Matzdorf, Investigation of Line Shapes and Line Intensities by High-resolution UV-photoemission Spectroscopy - Some Case Studies on Nobel-metal Surface, Elsevier
    28.Andrea Damascelli, Physica Scripta. 109 (2004)
    29.S.K. Mahatha, S.R. Menon, Current Science Vol. 98, no.6 ,759 (2010)
    30.D. Cahen, A. Kahn, Adv. Mater. 15, 271 (2003)
    31.D. Yoshimura, H. Ishii, Y. Ouchi, E. Ito, T. Miyamae, S. Hasegawa, K. Okudaira, N. Ueno, and K. Seki, Phys. Rev. B 60, 9046 (1999)
    32.D. Yoshimura, H. Ishii, Y. Ouchi, E. Ito, T. Miyamae, S. Hasegawa, N. Ueno, and K. Seki, J. Electron Spectrosc. Relat. Phenom. 88-91, 875 (1998)
    33.David J. Willock, Molecular Symmetry, Wiley
    34.E. Ito, H. Oji, H. Ishii, K. Oichi, Y, Ouchi and K. Seki, Chem. Phys. Lett. 287, 137 (1998)
    35.K. Seki, E. Ito, and H. Ishii, Synth. Metals 91, 137 (1997)
    36.K. Seki, N. Ueno, U. O. Karlson, R. Engelhardt, and E. E. Koch, Chem. Phys. 105, 247 (1986)
    37.S.M. Wetterer, D.J. Lavrich, T. Cummings, S.L. Bernasek, and G. Scoles, J. Phys. Chem. B 102, 9266 (1998)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE