研究生: |
歐家瑋 Ou, Chia-Wei |
---|---|
論文名稱: |
1-氮二苯環庚烯/芴螺旋體衍生物及吖啶/芴螺旋體衍生物於有機電激發光二極體之應用 The Application of Spirally Configured 1-Azadibenzosuberene/Fluorene Derivatives and Acridine/Fluorene Derivatives for Organic Light Emitting Diode |
指導教授: |
陳建添
Chen, Tien-Chien |
口試委員: |
鄭建鴻
Cheng, Chien-Hong 周卓煇 Jou, Jwo-Huei |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 293 |
中文關鍵詞: | 芴螺旋體 、電子傳輸層 、有機電激發光二極體 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗室所開發之順式二苯乙烯/芴螺旋體系統之衍生物應用於有機光電材料已有10年歷史。在此,我們延續順式二苯乙烯/芴螺旋體系統,以含氮雜環之模板合成出一系列1-氮二苯環庚烯/芴螺旋體之衍生物,並在C3及C8位置上引入不同拉電子官能基及芳香胺官能基,期望能透過此全新模板發展出高效率之電子傳輸層以及客體發光材料。此外,我們合成出具有雙極性特徵之吖啶/芴螺旋體衍生物,嘗試將其應用於綠色磷光元件之電子傳輸層材料。
第一部分,我們於1-氮二苯環庚烯片段引入苯氰基、嘧啶、吡啶,將其應用於綠色磷光元件之電子傳輸層時,1-aza-STIF-mPhCN 和1-aza-STIF-ppy有最好的效能。在亮度1000 cd/m2下時,外部量子效率分別為 19.8% 和 20.5%,電流效率和功率效率分別為68.6 cd/A、67.6 lm/W和72.3 cd/A、58.5 lm/W。應用於藍色螢光元件時,1-aza-STIF-pmPh 和1-aza-STIF-ppy有亮眼的表現。在亮度1000 cd/m2下時,外部量子效率分別為 6.8% 和 7.3%,電流效率和功率效率分別為10.1 cd/A、3.6 lm/W和10.8 cd/A、5.5 lm/W。
第二部分,我們於1-氮二苯環庚烯片段引入二苯胺、三苯胺,將其應用於藍色螢光材料,在亮度1000 cd/m2下,搭配主體材料α,β-ADN時,摻雜 3 wt%的 dpa-aza-STIF-tpa 有最好的效能,在亮度 1,000 cd/m2 下,外部量子效率為 4.0%,電流效率和功率效率分別為 5.4 cd/A 、 2.3 lm/W,並且 CIEy座標為0.19,此外,摻雜1 wt%時CIEy座標為0.09,為具有潛力之深藍螢光客體材料。
第三部分,我們以吖啶/芴螺旋體為模板引入苯氰基,將其應用於綠色磷光元件之電子傳輸層材料時,以FNAc-mPhCN元件效能略勝一籌,在亮度1000 cd/m2下時,外部量子效率為 17.4% ,電流效率和功率效率分別為61.4 cd/A、55.6 lm/W。
Derivatives of cis-stilbene/fluorene system which applied to organic optoelectronic materials have been developed by our group for more than ten years. As a rational extension of our existing STIF systems, a series of spirally configured 1-azadibenzosuberene/fluorene (1-aza-STIF) derivatives were synthesized based on 1-azadibenzosuberenone template. Five different electron withdrawing groups or two different arylamino groups were attached on the C3 and C8 position of the core template. We expected that these compounds could be applied to electron-transporting materials (ETMs) and blue-emitting dopants in OLED applications in hope to achieve high efficiency by ultilizing the brand-new template. Moreover, two acridine/fluorene derivatives provided with bipolar characteristics have been synthesized and were applied to green phosphorescent organic light-emitting diodes (PHOLEDs) as ETMs.
Phenylcyano groups, pyrimidinyl groups, pyridinyl groups were chosen to optimize the electron-transporting properties based on previous experience. The green PHOLEDs using 1-aza-STIF-mPhCN and 1-aza-STIF-ppy , respectively, as electron transport layers exhibited the best performance with EQEs of 19.8% and 20.5%, CEs/PEs of 68.6 cd/A / 67.6 lm/W, and 72.3 cd/A / 58.5 lm/W at 1000 cd/m2. The blue fluorescent device fabricated by using 1-aza-STIF-pmPh and 1-aza-STIF-ppy, respectively, as electron transport layer showed the best performance with EQEs of 6.8% and 7.3%, CEs/PEs of 10.1 cd/A / 3.6 lm/W, and 10.8 cd/A / 5.5 lm/W at 1000 cd/m2, respectively.
In addition, arylamino groups were widely used as blue-emitting and hole-transport materials. Herein, we synthesized three compounds that acted as blue dopants by choosing diphenylamino groups and triphenylamino groups. When combined with the host material α,β-ADN, 3 wt% dpa-aza-STIF-tpa exhibited best performance with EQE of 4.0%, and CE/PE of 5.4 cd/A / 2.3 lm/W and CIEy of 0.19 at 1,000 cd/m2. Moreover, the device showed the CIEy of 0.09 at 1,000 cd/m2 when doping with 1 wt% dpa-aza-STIF-tpa, indicating it’s potential for deep-blue emitter.
On the other hand, two spirally configured acridine/fluorene derivatives which were combined with phenylcyano groups were applied to green PHOLEDs as ETMs. The results of device performance showed that FNAc-mPhCN were slightly better than the other, with EQE of 17.4%, and CE/PE of 61.4 cd/A / 55.6 lm/W at 1000 cd/m2.
(1) Pope, M.; Magnante, P.; Kallmann, H. P. J. Chem. Phys. 1963, 38, 2042.
(2) Tang, C. W.; Vanslyke, S. A. Appl. Phys. Lett. 1987, 51, 913.
(3) Tang, C. W.; Vanslyke, S. A.; Chen, C. H. J. Appl. Phys. 1989, 65, 3610.
(4) Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burn, P. L.; Holmes, A. B. Nature 1990, 347, 539.
(5) Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Nature 2012, 492, 234–239.
(6) Zhu, M. R.; Yang, C. L. Chem. Soc. Rev. 2013, 42, 4963.
(7) Klessinger, M.; Michl J. ‘‘Excited States and Photochemistry of Organic Molecules’’, VCH Publishers, New York 1995.
(8) (a)Guo, K. P.; Wang, H. D.; Wang, Z. X.; Si, C. F.; Peng, C. Y.; Chen, G.; Zhang, J. H.; Wang, G. F.; Wei, B. Chem. Sci. 2017, 8, 1259;(b)Fukagawa, H.; Shimizu, T.; Kamada, T.; Yui, S.; Hasegawa, M.; Morii, K.; Yamamoto, T. Sci Rep-Uk 2015, 5.
(9) VanSlyke, S. A.; Chen, C. H.; Tang, C. W. Appl. Phys. Lett. 1996, 69, 2160.
(10) Shirota, Y.; Kuwabara, Y.; Inada, H.; Wakimoto, T.; Nakada, H.; Yonemoto, Y.; Kawami, S.; Imai, K. Appl. Phys. Lett. 1994, 65, 807.
(11) Elschner, A.; Bruder, F.; Heuer, H. W.; Jonas, F.; Karbach, A.; Kirchmeyer, S.; Thurm, S. Synthetic Met 2000, 111, 139.
(12) (a)Jang, J. G.; Song, S. H. WO2004054326 2004;(b)Kim, Y. K.; Kim, J. W.; Park, Y. Appl. Phys. Lett. 2009, 94.
(13) Yamamoto, T.; Nishiyama, M.; Koie, Y. Tetrahedron Lett 1998, 39, 2367.
(14) Fujikawa, H.; Ishii, M.; Tokito, S.;Taga, Y. Mat. Res. Soc. Symp. Proc. 2000, 621, Q3.4.1.
(15) Salbeck, J.; Yu, N.; Bauer, J.; Weissortel, F.; Bestgen, H. Synthetic Met 1997, 91, 209.
(16) Kuwabara, Y.; Ogawa, H.; Inada, H.; Noma, N.; Shirota, Y. Adv. Mater. 1994, 6, 677.
(17) Yasuda, T.; Yamaguchi, Y.; Zou, D.-C.; Tsutsui, T. Jpn. Appl. Phys. Part1 2002, 41, 5626.
(18) Kinoshita, M.; Kita, H.; Shirota, Y. Adv, Funct. Mater. 2002, 12, 780.
(19) Su, S. -J.; Chiba, T.; Takeda, T.; Kido, J. Adv. Mater. 2008, 20, 2125.
(20) Sasabe, H.; Chiba, T.; Su, S. J.; Pu, Y. J.; Nakayama, K. I.; Kido, J. Chem. Commun. 2008, 5821.
(21) Gao, Z. Q.; Lee, C. S.; Bello, I.; Lee, S. T.; Chen, R. M.; Luh, T. Y.; Shi, J.; Tang, C. W. Appl. Phys. Lett. 1999, 74, 865.
(22) Yoon, J. A.; Kim, Y. H.; Kim, N. H.; Yoo, S. I.; Lee, S. Y.; Zhu, F. R.; Kim, W. Y. Nanoscale Res Lett 2014, 9.
(23) LopezVillanueva, J. A.; Gamiz, F.; Roldan, J. B.; Ghailan, Y.; Carceller, J. E.; Cartujo, P. Ieee T Electron Dev 1997, 44, 1425.
(24) Brown, T. M.; Friend, R. H.; Millard, I. S.; Lacey, D. J.; Butler, T.; Burroughes, J. H.; Cacialli, F. J. Appl. Phys. 2003, 93, 6159.
(25) Brown, T. M.; Friend, R. H.; Millard, I. S.; Lacey, D. J.; Burroughes, J. H.; Cacialli ,F. Appl. Phys. Lett. 2001, 79, 174.
(26) Yoo, S.-J.; Chang, J.-H.; Lee, J.-H.; Moon, C.-K.; Wu, C.-I.; Kim, J.-J. Sci. Rep. 2014, 4, 3902.
(27) Yokoyama, T.; Yoshimura, D.; Ito, E.; Ishii, H.; Ouchi, Y.; Seki, K. Jpn. J. Appl. Phys. 1 2003, 42, 3666.
(28) (a)Adamovich, V.; Brooks, J.; Tamayo, A.; Alexander, A. M.; Djurovich, P. I.; D'Andrade, B. W.; Adachi, C.; Forrest, S. R.; Thompson, M. E. New. J. Chem. 2002, 26, 1171;(b)Holmes, R. J.; Forrest, S. R.; Tung, Y. J.; Kwong, R. C.; Brown, J. J.; Garon, S.; Thompson, M. E. Appl. Phys. Lett. 2003, 82, 2422.
(29) (a)Lamansky, S.; Djurovich, P.; Murphy, D.; Abdel-Razzaq, F.; Lee, H. E.; Adachi, C.; Burrows, P. E.; Forrest, S. R.; Thompson, M. E. J. Am. Chem. Soc. 2001, 123, 4304;(b)D'Andrade, B. W.; Baldo, M. A.; Adachi, C.; Brooks, J.; Thompson, M. E.; Forrest, S. R. Appl. Phys. Lett. 2001, 79, 1045.
(30) Hu, Y.-X.; Lin, T.; Xia, X.; Mu, W.-Y.; Sun, Y.-L.; He, W.-Z.; Wei, C.-T.; Zhang, D.-Y.; Li, X.; Cui, Z. J. Mater. Chem. C. 2019, 7, 4178.
(31) Inomata, H.; Goushi, K.; Masuko, T.; Konno, T.; Imai, T.; Sasabe, H.; Brown, J. J.; Adachi, C. Chem. Mater. 2004, 16, 1285.
(32) Vecchi, P. A.; Padmaperuma, A. B.; Qiao, H.; Sapochak, L. S.; Burrows, P. E. Org. Lett. 2006, 8, 4211.
(33) Zhang, J.; Ding, D. X.; Wei, Y.; Xu, H. Chem. Sci. 2016, 7, 2870.
(34) (a)Su, S. J.; Sasabe, H.; Takeda, T.; Kido, J. Chem. Mater. 2008, 20, 1691;(b)Su, S. J.; Cai, C.; Kido, J. Chem. Mater. 2011, 23, 274.
(35) Ge, Z. Y.; Hayakawa, T.; Ando, S.; Ueda, M.; Akiike, T.; Miyamoto, H.; Kajita, T.; Kakimoto, M. Org. Lett. 2008, 10, 421.
(36) Jeon, S. O.; Lee, J. Y. Org. Electron. 2011, 12, 1893.
(37) Su, Y. J.; Huang, H. L.; Li, C. L.; Chien, C. H.; Tao, Y. T.; Chou, P. T.; Datta, S.; Liu, R. S. Adv. Mater. 2003, 15, 884.
(38) Baldo, M. A.; Lamansky, S.; Burrows, P. E.; Thompson, M. E.; Forrest, S. R. Appl. Phys. Lett. 1999, 75, 4.
(39) Adachi, C.; Kwong, R.; Djurovich, P.; Adamovich, V.; Baldo, M. A.; Thompson, M. E.; Forrest, S. R. Appl. Phys. Lett. 2001, 79, 2082.
(40) (a)Yang, C. K.; Yang, C. M.; Liao, H. H.; Horng, S. F.; Meng, H. F. Appl. Phys. Lett. 2007, 91;(b)Blakesley, J. C.; Castro, F. A.; Kylberg, W.; Dibb, G. F. A.; Arantes, C.; Valaski, R.; Cremona, M.; Kim, J. S.; Kim, J. S. Org. Electron. 2014, 15, 1263;(c)Tsai, M. J.; Meng, H. F. J. Appl. Phys. 2005, 97.
(41) Bulovic, V.; Khalfin, V. B.; Gu, G.; Burrows, P. E.; Garbuzov, D. Z.; Forrest, S. R. Phys. Rev. B. 1998, 58, 3730.
(42) 陳金鑫; 黃孝文,夢幻顯示器; OLED材料與元件,五南出版社,2007,p.256–p.279.
(43) Chen, D.; Su, S.-J. ; Cao, Y. J. Mater. Chem. C 2014, 2, 9565.
(44) Wei, Y.; Chen, C. T. J. Am. Chem. Soc. 2007, 129, 7478.
(45) 趙韋善(2013),具雙極性順式二苯乙烯/芴螺旋體雙重鄰位混成系統之衍生物在有機電致發光和有機敏化太陽能電池材料上的應用之研究,國立台灣師範大學化學系博士論文。
(46) 黃健博(2015),順式二苯乙烯/芴螺旋體之吡啶衍生物於有機電激發光二極體的應用,國立清華大學化學系碩士論文。
(47) 程煜翔(2015),順式二苯乙烯/芴螺旋體衍生物於有機電激發光二極體的應用,國立清華大學化學系碩士論文。
(48) 周家宏(2016),順式二苯乙烯/芴螺旋體之嘧啶衍生物及喹喔啉配體之銥金屬錯合物於有機電激發光二極體之應用,國立清華大學化學系碩士論文。
(49) 陳威樺(2017),三芐環庚烷/芴螺旋體衍生物於有機電激發光二極體的應用,國立清華大學化學系碩士論文。
(50) 梁師堯(2017),順式二苯乙烯之芴螺旋體衍生物於有機電激發光二極體與鈣鈦礦太陽能電池材料的應用,國立清華大學化學系碩士論文。
(51) Su, S.-J.; Takahashi, Y.; Chiba, T.; Takeda, T.; Kido, J. Adv. Funct. Mater. 2009, 19, 1260.
(52) Sasabe, H.; Gonmori, E.; Chiba, T.; Li, Y.-J.; Tanaka, D.; Su, S.-J.; Takeda, T.; Pu, Y.-J.; Nakayama, K.; Kido, J. Chem. Mater. 2008, 20, 5951.
(53) Sasabe, H.; Chiba, T.; Su, S. J.; Pu, Y.-J.; Nakayama, K.; Kido, J. Chem. Commun. 2008 , 5821.
(54) Liu, M.; Su, S. J.; Jung, M. C.; Qi, Y. B.; Zhao, W. M.; Kido, J. Chem. Mater. 2012, 24, 3817.
(55) Seino, Y.; Inomata, S.; Sasabe, H.; Pu, Y, -J.; Kido, J. Adv.Funct. Mater. 2016, 28, 2638–2643.
(56) Zhang, D.; Qiao, J.; Zhang, D.; Duan, L. Adv. Mater. 2017, 29, 1702847.
(57) 高自良、盛磊、石宇、劉英瑞、孟凡民、胡葆華. 一種新型有機電致發光材料及其應用. CN105238389A, January 01, 2016.
(58) Charlton, J. L.; Saltiel, J. J. Phys. Chem. 1977, 81, 1940.
(59) (a)Marrec, P.; Dano, C.; Gueguen-Simonet, N.; Simonet, J. Synthetic Met 1997, 89, 171;(b)Abe, S. Y.; Bemede, J. C.; Delvalle, M. A.; Tregouet, Y.; Ragot, F.; Diaz, F. R.; Lefrant, S. Synthetic Met 2002, 126, 1;(c)Omer, K. M.; Ku, S. Y.; Chen, Y. C.; Wong, K. T.; Bard, A. J. J. Am. Chem. Soc. 2010, 132, 10944.
(60) (a)Carbone, A.; Kotowska, B. K.; Kotowski, D. Phys. Rev. Lett. 2005, 95, 236601;(b)Cai, C.; Su, S. J.; Chiba, T.; Sasabe, H.; Pu, Y. J.; Nakayama, K.; Kido, J. Org. Electron. 2011, 12, 843.
(61) Sasabe, H.; Nakanishi, H.; Watanabe, Y.; Yano, S.; Hirasawa, M.; Pu, Y. J.; Kido, J. Adv. Funct. Mater. 2013, 23, 5550.
(62) Féry, C.; Racine, B.; Vaufrey, D.; Doyeux, H.; Cinà, S. Appl. Phys. Lett. 2005, 87, 213502.
(63) Jeon, Y.-M.; Lee, J.-Y.; Kim, J.-W.; Lee, C.-W.; Gong, M.-S. Org. Electron. 2010, 11, 1844.
(64) Xiao, H.; Ding, L.; Ruan, D.; Li, B.; Ding, N.; Ma, D. Dyes and Pigments 2015, 121, 7.
(65) Chen, Y. H.; Lin, C. C.; Huang, M. J.; Hung, K.; Wu, Y. C.; Lin, W. C.; Chen-Cheng, R. W.; Lin, H. W.; Cheng, C. H. Chem. Sci. 2016, 7, 4044.
(66) Jia, Y.; Wu, S.; Zhang, Y.; Fan, S.; Zhao, X.; Liu, H.; Dong, X.; Wang, S.; Li, X. Org. Electron. 2019, 69, 289.
(67) Park, T. Y.; Kim, D.; Chun, M.; Kim, H. S.; Ahn, J. Nitrogen-containing heterocyclic compound and organic electronic device comprising same. WO2014175627, October 30, 2014.
(68) Park, T. Y.; Chun, M.; Hong, S. K.; Lee, D. H.; Kim, D. Nitrogen-containing heterocyclic compounds and organic electronic device comprising the same. US9299935B2, April 29, 2016.
(69) Chen, Y.; Huang, J.; Wang, L.; Su, J. Thin Solid Films 2017, 642, 96.
(70) Park, M. S.; Lee, J. Y.; Chem. Mater. 2011, 23, 4338.
(71) 張安泰(2017),順式二苯乙烯/芴螺旋體之三取代衍生物於有機電激發光二極體之應用,國立清華大學化學系碩士論文。