研究生: |
劉威伸 Liu, Wei Shen |
---|---|
論文名稱: |
二硫化鉬之化學修飾 Chemical Functionalization of Molybdenum Disulfides |
指導教授: |
李奕賢
Lee, Yi Hsien |
口試委員: |
吳振名
張哲豪 Wu, Jhen Ming |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2015 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 63 |
中文關鍵詞: | 二硫化鉬 、化學修飾 、羅丹明B 、二甲基甲醯胺 、P型 、N型 |
外文關鍵詞: | Molybdenum disulfide, functionalization, Rhodamine B, Dimethylformamide, p doping, n doping |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究藉由表面修飾來改變二硫化鉬的光學和電學特性,利用羅丹明B(Rhodamin B, RhB)和二甲基甲醯胺(DMF)修飾二硫化鉬有效地達到與二硫化鉬的電荷轉移,並探討RhB和DMF的電荷轉移機制。利用拉曼光譜(Raman)和光致螢光光譜(Photoluminescence)檢視RhB和DMF修飾對二硫化鉬造成P型摻雜或和型摻雜的效果;利用原子力顯微鏡(Atomic Force Microscopy, AFM)量測觀察分子分布的均勻性和厚度,最後將二硫化鉬製成之元件做電性量測分析。根據RhB和DMF的分子結構和官能基提出電荷轉移的機制,此研究結果顯示RhB造成二硫化鉬P型摻雜,DMF則是造成二硫化鉬N型摻雜,並且提供電性量測直接證明化學修飾後有P型和N型摻雜的趨勢,本研究利用RhB和DMF修飾的方法對於改變二硫化鉬之電子元件特性的改變相當有潛力。
Our research dedicate to chemical functionalization and effect of Raman and PL that molecular induce, we conclude mechanism of rhodamine B and dimethylformamide, by chemical functionalization, electrons can transfer to molybdenum disulfide and change its optical and electric properties. We confirm that molecular cause molybdenum disulfide what effect is induced by Raman and Photoluminescence, observe distribution and uniformity of molecular by AFM. Finally, we measure device that are made of molybdenum disulfide and show that molecular functionalization change electrical properties of molybdenum disulfide indeed. According to results of Raman and PL, we can discern what effect molecular cause and conclude mechanism of molecular. Our research shows rhodamine B that has benzene and electron-withdrawing can cause molybdenum disulfide p-doping, however, dimethylformamide contains electron-donating and causes molybdenum disulfide n-doping. Our research offers results of chemical functionalization that we can refer to change electrical properties of molybdenum disulfide in future.
[1] Novoselov, K. S., et al. "Two-dimensional atomic crystals." Proceedings of the National Academy of Sciences of the United States of America 102.30 (2005): 10451-10453.
[2] Dean, C. R., et al. "Boron nitride substrates for high-quality graphene electronics." Nature nanotechnology 5.10 (2010): 722-726.
[3] Pacile, D., et al. "The two-dimensional phase of boron nitride: Few-atomic-layer sheets and suspended membranes." Applied Physics Letters 92.13 (2008): 133107.
[4] Elias, D. C., et al. "Dirac cones reshaped by interaction effects in suspended graphene." Nature Physics 7.9 (2011): 701-704.
[5] Lin, Ming-Wei, et al. "Room-temperature high on/off ratio in suspended graphene nanoribbon field-effect transistors." Nanotechnology 22.26 (2011): 265201.
[6] Li, Xiaolin, et al. "Chemically derived, ultrasmooth graphene nanoribbon semiconductors." Science 319.5867 (2008): 1229-1232.
[7] Han, Melinda Y., et al. "Energy band-gap engineering of graphene nanoribbons." Physical review letters 98.20 (2007): 206805.
[8] Balog, Richard, et al. "Bandgap opening in graphene induced by patterned hydrogen adsorption." Nature materials 9.4 (2010): 315-319.
[9] Wilson, J. A., and A. D. Yoffe. "The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties." Advances in Physics 18.73 (1969): 193-335.
[10] Wang, Qing Hua, et al. "Electronics and optoelectronics of two-dimensional transition metal dichalcogenides." Nature nanotechnology 7.11 (2012): 699-712.
[11] Sipos, Balazs, et al. "From Mott state to superconductivity in 1T-TaS2." Nature materials 7.12 (2008): 960-965.
[12] Wilson, Jl A., F. J. Di Salvo, and S. Mahajan. "Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides."Advances in Physics 24.2 (1975): 117-201.
[13] Neto, AH Castro. "Charge density wave, superconductivity, and anomalous metallic behavior in 2D transition metal dichalcogenides." Physical review letters 86.19 (2001): 4382.
[14] Kuc, Agnieszka, Nourdine Zibouche, and Thomas Heine. "Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2."Physical Review B 83.24 (2011): 245213.
[15] Alem, Nasim, et al. "Atomically thin hexagonal boron nitride probed by ultrahigh-resolution transmission electron microscopy." Physical Review B80.15 (2009): 155425.
[16] Zeng, Hualing, et al. "Valley polarization in MoS2 monolayers by optical pumping." Nature nanotechnology 7.8 (2012): 490-493.
[17] Mak, Kin Fai, et al. "Atomically thin MoS2: a new direct-gap semiconductor."Physical Review Letters 105.13 (2010): 136805.
[18] Splendiani, Andrea, et al. "Emerging photoluminescence in monolayer MoS2."Nano letters 10.4 (2010): 1271-1275.
[19] Bertolazzi, Simone, Jacopo Brivio, and Andras Kis. "Stretching and breaking of ultrathin MoS2." ACS nano 5.12 (2011): 9703-9709.
[20] Radisavljevic, Branimir, et al. "Single-layer MoS2 transistors." Nature nanotechnology 6.3 (2011): 147-150.
[21] Radisavljevic, Branimir, Michael Brian Whitwick, and Andras Kis. "Integrated circuits and logic operations based on single-layer MoS2." ACS nano 5.12 (2011): 9934-9938.
[22] Castellanos-Gomez, Andres, et al. "Laser-thinning of MoS2: on demand generation of a single-layer semiconductor." Nano letters 12.6 (2012): 3187-3192.
[23] Dines, Martin B. "Lithium intercalation via n-butyllithium of the layered transition metal dichalcogenides." Materials Research Bulletin 10.4 (1975): 287-291.
[24] Lee, Yi-Hsien, et al. "Synthesis of Large-Area MoS2 Atomic Layers with Chemical Vapor Deposition." Advanced Materials 24. 17 (2012): 2320-2325
[25] Zhan, Yongjie, et al. Large-Area Vapor-Phase Growth and Characterization of MoS2 Atomic Layers on a SiO2 Substrate. Small 8.7 (2012): 966-971
[26] Liu, Keng-Ku, et al. "Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates." Nano letters 12.3 (2012): 1538-1544.
[27] Zeng, Hualing, et al. "Valley polarization in MoS2 monolayers by optical pumping." Nature nanotechnology 7.8 (2012): 490-493.
[28] Joensen, Per, R. F. Frindt, and S. Roy Morrison. "Single-layer MoS2."Materials research bulletin 21.4 (1986): 457-461.
[29] Eda, Goki, et al. "Photoluminescence from chemically exfoliated MoS2." Nano letters 11.12 (2011): 5111-5116.
[30] Li, Tianshu, and Giulia Galli. "Electronic properties of MoS2 nanoparticles."The Journal of Physical Chemistry C 111.44 (2007): 16192-16196.
[31] Liu, Leitao, et al. "Performance limits of monolayer transition metal dichalcogenide transistors." Electron Devices, IEEE Transactions on 58.9 (2011): 3042-3047.
[32] Ding, Yi, et al. "First principles study of structural, vibrational and electronic properties of graphene-like MX2 (M= Mo, Nb, W, Ta; X= S, Se, Te) monolayers." Physica B: Condensed Matter 406.11 (2011): 2254-2260.
[33] Ataca, C., H. Sahin, and S. Ciraci. "Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure." The Journal of Physical Chemistry C 116.16 (2012): 8983-8999.
[34] The International Technology Roadmap for Semiconductors. http://www.itrs.net/Links/2011ITRS/Home2011.htm (Semiconductor Industry Association, 2011).
[35] Kobayashi, Katsuyoshi, and Jun Yamauchi. "Electronic structure and scanning-tunneling-microscopy image of molybdenum dichalcogenide surfaces." Physical Review B 51.23 (1995): 17085.
[36] Lebegue, S., and O. Eriksson. "Electronic structure of two-dimensional crystals from ab initio theory." Physical Review B 79.11 (2009): 115409.
[37] Mak, Kin Fai, et al. "Atomically thin MoS2: a new direct-gap semiconductor."Physical Review Letters 105.13 (2010): 136805.
[38] Frindt, R. F. "The optical properties of single crystals of WSe2 and MoTe2."Journal of Physics and Chemistry of Solids 24.9 (1963): 1107-1108.
[39] Frindt, R. F., and A. D. Yoffe. "Physical properties of layer structures: optical properties and photoconductivity of thin crystals of molybdenum disulphide."Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. Vol. 273. No. 1352. The Royal Society, 1963.
[40] Kam, K. K., and B. A. Parkinson. "Detailed photocurrent spectroscopy of the semiconducting group VIB transition metal dichalcogenides." The Journal of Physical Chemistry 86.4 (1982): 463-467.
[41] Bollinger, M. V., et al. "One-dimensional metallic edge states in MoS2."Physical review letters 87.19 (2001): 196803.
[42] Balendhran, Sivacarendran, et al. "Atomically thin layers of MoS2 via a two step thermal evaporation–exfoliation method." Nanoscale 4.2 (2012): 461-466.
[43] Shi, Yumeng, et al. "Van der Waals epitaxy of MoS2 layers using graphene as growth templates." Nano letters 12.6 (2012): 2784-2791.
[44] Peng, Yiya, et al. "Hydrothermal synthesis of MoS2 and its pressure-related crystallization." Journal of Solid State Chemistry 159.1 (2001): 170-173.
[45] Peng, Yiya, et al. "Hydrothermal Synthesis and Characterization of Single-Molecular-Layer MoS2 and MoSe2." Chemistry Letters 8 (2001): 772-773.
[46] Böker, Th, et al. "Band structure of MoS2, MoSe2, and α−MoTe2: Angle-resolved photoelectron spectroscopy and ab initio calculations." Physical Review B 64.23 (2001): 235305.
[47] Schwierz, Frank. "Graphene transistors." Nature nanotechnology 5.7 (2010): 487-496.
[48] Arden, Wolfgang M. "The International Technology Roadmap for Semiconductors—Perspectives and challenges for the next 15 years." Current Opinion in Solid State and Materials Science 6.5 (2002): 371-377.
[49] Ayari, Anthony, et al. "Realization and electrical characterization of ultrathin crystals of layered transition-metal dichalcogenides." Journal of applied physics 101.1 (2007): 14507-14507.
[50] Sze, S. M. & Ng, K. K. Physics of Semiconductor Devices (Wiley, 2007).
[51] Molina-Sanchez, Alejandro, and Ludger Wirtz. "Phonons in single-layer and few-layer MoS2 and WS2." Physical Review B 84.15 (2011): 155413.
[52] Lee, Changgu, et al. "Anomalous lattice vibrations of single-and few-layer MoS2." ACS nano 4.5 (2010): 2695-2700.
[53] Jariwala, Deep, et al. "Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides." ACS nano 8.2 (2014): 1102-1120.
[54] Kiriya, Daisuke, et al. "Air-stable surface charge transfer doping of MoS2 by benzyl viologen." Journal of the American Chemical Society 136.22 (2014): 7853-7856.
[55] Fang, Hui, et al. "High-performance single layered WSe2 p-FETs with chemically doped contacts." Nano letters 12.7 (2012): 3788-3792.
[56] Fang, Hui, et al. "Degenerate n-doping of few-layer transition metal dichalcogenides by potassium." Nano letters 13.5 (2013): 1991-1995.
[57] Kong, Jing, et al. "Alkaline metal-doped n-type semiconducting nanotubes as quantum dots." Applied Physics Letters 77.24 (2000): 3977-3979.
[58] Javey, Ali, et al. "High performance n-type carbon nanotube field-effect transistors with chemically doped contacts." Nano letters 5.2 (2005): 345-348.
[59] Ohta, Taisuke, et al. "Controlling the electronic structure of bilayer graphene."Science 313.5789 (2006): 951-954.
[60] Zhang, Wenjing, et al. "Opening an electrical band gap of bilayer graphene with molecular doping." ACS nano 5.9 (2011): 7517-7524.
[61] Maddalena Binda Organic Electronics: principles, devices and applications Milano, November 15-18th, 2011
[62] Das, Saptarshi, et al. "High performance multilayer MoS2 transistors with scandium contacts." Nano letters 13.1 (2012): 100-105.
[63] Yu, A. Y. C. "Electron tunneling and contact resistance of metal-silicon contact barriers." Solid-State Electronics 13.2 (1970): 239-247.
[64] Du, Yuchen, et al. "Molecular Doping of Multilayer Field-Effect Transistors: Reduction in Sheet and Contact Resistances." Electron Device Letters, IEEE 34.10 (2013): 1328-1330.
[65] Yang, Lingming, et al. "Chloride molecular doping technique on 2D materials: WS2 and MoS2." Nano letters 14.11 (2014): 6275-6280.
[66] Yu, Woo Jong, et al. "Toward tunable band gap and tunable dirac point in bilayer graphene with molecular doping." Nano letters 11.11 (2011): 4759-4763.
[67] Kim, Soo Min, et al. "Reduction-controlled viologen in bisolvent as an environmentally stable n-type dopant for carbon nanotubes." Journal of the American Chemical Society 131.1 (2008): 327-331.
[68] Andleeb, Shaista, Arun Kumar Singh, and Jonghwa Eom. "Chemical doping of MoS2 multilayer by p-toluene sulfonic acid." Science and Technology of Advanced Materials 16.3 (2015): 035009.
[69] Tarasov, Alexey, et al. Contorlled Doping of large-Area Trilayer MoS2 with Molecular Reductants and Oxidants. Advanced Materials 27.7 (2015): 1175-1181.
[70] D.R. Lide (Ed.), Handbook of Chemistry and Physics, 90th, CRC Press, 2010.
[71] Su, Weitao, et al. "Enhancing photoluminescence of trion in single-layer MoS2 using p-type aromatic molecules." Chemical Physics Letters 635 (2015): 40-44.
[72] Rai, Amritesh, et al. "Air Stable Doping and Intrinsic Mobility Enhancement in Monolayer Molybdenum Disulfide by Amorphous Titanium Suboxide Encapsulation." Nano letters (2015).
[73] Zhao, Peida, et al. "Air Stable p-Doping of WSe2 by Covalent Functionalization." ACS nano 8.10 (2014): 10808-10814.
[74] Mak, Kin Fai, et al. "Tightly bound trions in monolayer MoS2." Nature materials12.3 (2013): 207-211.
[75] Ross, Jason S., et al. "Electrical control of neutral and charged excitons in a monolayer semiconductor." Nature communications 4 (2013): 1474.
[76] Jones, Aaron M., et al. "Optical generation of excitonic valley coherence in monolayer WSe2." Nature nanotechnology 8.9 (2013): 634-638.
[77] Tongay, Sefaattin, et al. "Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating." Nano letters13.6 (2013): 2831-2836.
[78] Chen, Wei, et al. "Surface transfer p-type doping of epitaxial graphene." Journal of the American Chemical Society 129.34 (2007): 10418-10422.
[79] Coletti, Camilla, et al. "Charge neutrality and band-gap tuning of epitaxial graphene on SiC by molecular doping." Physical Review B 81.23 (2010): 235401.
[80] Dukovic, Gordana, et al. "Reversible surface oxidation and efficient luminescence quenching in semiconductor single-wall carbon nanotubes."Journal of the American Chemical Society 126.46 (2004): 15269-15276.
[81] Matsunaga, Ryusuke, Kazunari Matsuda, and Yoshihiko Kanemitsu. "Observation of charged excitons in hole-doped carbon nanotubes using photoluminescence and absorption spectroscopy." Physical review letters106.3 (2011): 037404.
[82] Park, Jin Sung, et al. "Observation of negative and positive trions in the electrochemically carrier-doped single-walled carbon nanotubes." Journal of the American Chemical Society 134.35 (2012): 14461-14466.
[83] Mouri, Shinichiro, et al. "Temperature dependence of photoluminescence spectra in hole-doped single-walled carbon nanotubes: Implications of trion localization." Physical Review B 87.4 (2013): 045408.
[84] Mouri, Shinichiro, Yuhei Miyauchi, and Kazunari Matsuda. "Tunable photoluminescence of monolayer MoS2 via chemical doping." Nano letters13.12 (2013): 5944-5948.
[85] Montalti, M.; Credi, A.; Prodi, L.; Gandolfi, M. T. Handbook of Photochemistry, 3rd ed.; CRC Press: Boca Raton, FL, 2006.
[86] Dolui, Kapildeb, et al. "Possible doping strategies for MoS2 monolayers: An ab initio study." Physical Review B 88.7 (2013): 075420.
[87] Sun, Qing-Qing, et al. "The physics and backward diode behavior of heavily doped single layer MoS2 based pn junctions." Applied Physics Letters 102.9 (2013): 093104.
[88] Yang, Lingming, et al. "High-performance MoS2 field-effect transistors enabled by chloride doping: Record low contact resistance (0.5 kΩ· µm) and record high drain current (460 µA/µm)." VLSI Technology (VLSI-Technology): Digest of Technical Papers, 2014 Symposium on. IEEE, 2014.
[89] McDonnell, Stephen, et al. "Defect-dominated doping and contact resistance in MoS2." ACS nano 8.3 (2014): 2880-2888.
[90] Zhang, YuLin, et al. "Generating oxygen adatoms on Au (997) by thermal decomposition of NO2." Chinese Science Bulletin 55.34 (2010): 3889-3893.
[91] Huffman, Robert E., and Norman Davidson. "Shock Waves in Chemical Kinetics: The Thermal Decomposition of NO21a." Journal of the American Chemical Society 81.10 (1959): 2311-2316.
[92] Grown graphene." Journal of Materials Chemistry 22.30 (2012): 15168-15174.
[93] Chakraborty, Biswanath, et al. "Symmetry-dependent phonon renormalization in monolayer MoS2 transistor." Physical Review B 85.16 (2012): 161403.
[94] Mao, Nannan, et al. "Solvatochromic effect on the photoluminescence of MoS2 monolayers." Small 9.8 (2013): 1312-1315.
[95] Yoon, Youngki, Kartik Ganapathi, and Sayeef Salahuddin. "How good can monolayer MoS2 transistors be?" Nano letters 11.9 (2011): 3768-3773.
[96] Morkoc, H., et al. "Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies." Journal of Applied Physics 76.3 (1994): 1363-1398.
[97] Lin, Yu-Ming, et al. "Wafer-scale graphene integrated circuit." Science332.6035 (2011): 1294-1297.
[98] Schwierz, Frank. "Graphene transistors." Nature nanotechnology 5.7 (2010): 487-496.
[99] Conley, Hiram J., et al. "Bandgap engineering of strained monolayer and bilayer MoS2." Nano letters 13.8 (2013): 3626-3630.
[100] Zhang, Shuang-Yuan, Michelle D. Regulacio, and Ming-Yong Han. "Self-assembly of colloidal one-dimensional nanocrystals." Chemical Society Reviews 43.7 (2014): 2301-2323.