研究生: |
陳柏勳 Chen, Po-Hsun |
---|---|
論文名稱: |
利用多色脈衝在空氣中產生之電漿激發兆赫輻射之研究 A study of terahertz emission from air plasma induced by multi-color laser pulse |
指導教授: |
潘犀靈
Pan, Ci-Ling |
口試委員: |
李晁逵
Lee, Chao-Kuei 施宙聰 Shy, Jow-Tsong 黃衍介 Huang, Yen-Chieh |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 67 |
中文關鍵詞: | 兆赫波 、兆赫輻射 、兆赫光子學 、電漿 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們研究以同調多色脈衝在空氣中產生電漿誘發兆赫輻射,理論上,我們以瞬態電流模型(transient current model)為基礎,其中電流來自穿隧游離之電漿濃度變化部分以ADK 模型(Ammosov-Delone-Krainov tunneling ionization model)計算之;此外,模擬中將不同頻率光之焦點(光腰)大小不同納入考慮。就由理論模擬探討總泵浦能量、不同諧波之能量比例以及相對相位對所產生之兆赫輻射的影響,並將雙色與三色脈衝泵浦架構之結果做比較。
模擬結果指出,最佳能量比例方面,使用鈦藍寶石雷射基頻及二倍頻(二色)再加入三倍頻(三色)脈衝時,最佳的能量比例均會隨著總泵浦能量增加而趨向以基頻光為主。用有相位控與沒有相位控制下之二色及三色脈衝在空氣中產生電漿誘發兆赫輻射強度相差分別為三和四個數量級,由此可看出使用三色脈衝時,相位控制比起使用二色脈衝更為重要。使用二色脈衝時,基頻與二倍頻光之最佳相對相位為0.5π且不隨總泵浦能量改變;使用三色脈衝時,最佳基頻與二倍頻及基頻與三倍頻之相對相位則分別為0.5π、π且皆不隨總泵浦能量改變。值得注意的是,使用三色脈衝時,在2π之內最佳的相對相位會有兩個,分別為0.5π, π 以及 1.5π, π。且在最佳相對相位下之三色脈衝在空氣中產生電漿誘發兆赫輻射會比二色脈衝誘發之兆赫輻射強度增加一至三個數量級,但此增強效應會隨總泵浦能量增加而遞減。此外,經過與四波混頻模型(Four-wave rectification model)比較後得出,在實驗上,若要區分所產生的兆赫輻射是由電漿中之瞬態電流(transient current)或者是三階非線性(third order nonlinearity)所貢獻,可由不同總泵浦能量情況下之最佳的諧波間能量比例之關連區分之。
In this work, a theoretical method to investigate terahertz (THz) emission from gas plasma induced by multi-color femtosecond laser pulses has been developed on the basis of the well-known transient current model under the assumption of frequency dependent beam size. Instead of static tunneling ionization model, we adopted Ammosov-Delone-Krainov (ADK) tunneling ionization model to calculate the tunneling ionization rate. The relation between the terahertz yield from the air plasma and the total pump energy, power ratio, relative phase are investigated under both 2- and 3-color pumping schemes.
In both 2-color and 3-color pumping schemes, the optimal power ratio tends to require a larger amount of fundamental field with the increment of total pump energy. By applying optimal relative phases, the terahertz intensity can be enhanced by three and four orders in 2- and 3-color pumping schemes, respectively. This implies the relative-phase control is more critical in 3-color pumping scheme. On the other hand, the optimal relative phases are independent of the power in both schemes. In 2-color pumping scheme, the optimal relative phase of 2nd harmonic field is 0.5π. In 3-color pumping scheme, there will be two optimal relative phases for the 2nd harmonic field, 0.5π and 1.5π, while the 3rd harmonic stays at π. The optimal relative phases are 0.5π, π and 1.5π, respectively. However, the enhancement in 3-color scheme decreases as the total pump energy increases. Furthermore, after comparing the simulation results based on transient photocurrent model to that for four-wave rectification(FWR) model, it is possible to experimentally distinguish the contribution of the relationship between the total pump energy and its optimal power ratio to the emitted terahertz radiation.
References
[1] B. E. Saleh, M. C. Teich, and B. E. Saleh, Fundamentals of photonics vol. 22: Wiley New York, 1991.
[2] B. Ferguson and X.-C. Zhang, "Materials for terahertz science and technology," Nature materials, vol. 1, pp. 26-33, 2002.
[3] M. Brucherseifer, M. Nagel, P. Haring Bolivar, H. Kurz, A. Bosserhoff, and R. Büttner, "Label-free probing of the binding state of DNA by time-domain terahertz sensing," Applied Physics Letters, vol. 77, pp. 4049-4051, 2000.
[4] J. Liu, J. Dai, S. L. Chin, and X.-C. Zhang, "Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases," Nature Photonics, vol. 4, pp. 627-631, 2010.
[5] B. Hu and M. Nuss, "Imaging with terahertz waves," Optics letters, vol. 20, pp. 1716-1718, 1995.
[6] D. Mittleman, M. Gupta, R. Neelamani, R. Baraniuk, J. Rudd, and M. Koch, "Recent advances in terahertz imaging," Applied Physics B, vol. 68, pp. 1085-1094, 1999.
[7] M. Usami, T. Iwamoto, R. Fukasawa, M. Tani, M. Watanabe, and K. Sakai, "Development of a THz spectroscopic imaging system," Physics in medicine and biology, vol. 47, p. 3749, 2002.
[8] D. M. Mittleman, S. Hunsche, L. Boivin, and M. C. Nuss, "T-ray tomography," Optics letters, vol. 22, pp. 904-906, 1997.
[9] S. Wang and X. Zhang, "Pulsed terahertz tomography," Journal of Physics D: Applied Physics, vol. 37, p. R1, 2004.
[10] B. Ferguson, S. Wang, D. Gray, D. Abbot, and X.-C. Zhang, "T-ray computed tomography," Optics Letters, vol. 27, pp. 1312-1314, 2002.
[11] P. H. Siegel, "Terahertz technology in biology and medicine," IEEE transactions on microwave theory and techniques, vol. 52, pp. 2438-2447, 2004.
[12] M. C. Kemp, P. Taday, B. E. Cole, J. Cluff, A. J. Fitzgerald, and W. R. Tribe, "Security applications of terahertz technology," in AeroSense 2003, 2003, pp. 44-52.
[13] J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, et al., "THz imaging and sensing for security applications—explosives, weapons and drugs," Semiconductor Science and Technology, vol. 20, p. S266, 2005.
[14] S. Engelbrecht, L. Bergé, S. Skupin, T. Wang, P. U. Jepsen, and B. Fischer, "Ultrabroadband spectroscopy for security applications," in Infrared, Millimeter, and Terahertz waves (IRMMW-THz), 2015 40th International Conference on, 2015, pp. 1-2.
[15] B. M. Fischer, H. Helm, and P. U. Jepsen, "Chemical recognition with broadband THz spectroscopy," Proceedings of the IEEE, vol. 95, pp. 1592-1604, 2007.
[16] T. Nagatsuma, G. Ducournau, and C. C. Renaud, "Advances in terahertz communications accelerated by photonics," Nature Photonics, vol. 10, pp. 371-379, 2016.
[17] M. J. Fitch and R. Osiander, "Terahertz waves for communications and sensing," Johns Hopkins APL technical digest, vol. 25, pp. 348-355, 2004.
[18] B. S. Williams, "Terahertz quantum-cascade lasers," Nature photonics, vol. 1, pp. 517-525, 2007.
[19] G. L. Carr, M. C. Martin, W. R. McKinney, K. Jordan, G. R. Neil, and G. P. Williams, "High-power terahertz radiation from relativistic electrons," Nature, vol. 420, pp. 153-156, 2002.
[20] M. Tonouchi, "Cutting-edge terahertz technology," Nature photonics, vol. 1, pp. 97-105, 2007.
[21] J. Hebling, K.-L. Yeh, M. C. Hoffmann, and K. A. Nelson, "High-power THz generation, THz nonlinear optics, and THz nonlinear spectroscopy," IEEE Journal of Selected Topics in Quantum Electronics, vol. 14, pp. 345-353, 2008.
[22] H. Y. Hwang, S. Fleischer, N. C. Brandt, B. G. Perkins Jr, M. Liu, K. Fan, et al., "A review of non-linear terahertz spectroscopy with ultrashort tabletop-laser pulses," Journal of Modern Optics, vol. 62, pp. 1447-1479, 2015.
[23] F. Su, F. Blanchard, G. Sharma, L. Razzari, A. Ayesheshim, T. Cocker, et al., "Terahertz pulse induced intervalley scattering in photoexcited GaAs," Optics express, vol. 17, pp. 9620-9629, 2009.
[24] M. C. Hoffmann, J. Hebling, H. Y. Hwang, K.-L. Yeh, and K. A. Nelson, "Impact ionization in InSb probed by terahertz pump—terahertz probe spectroscopy," Physical Review B, vol. 79, p. 161201, 2009.
[25] F. Blanchard, D. Golde, F. Su, L. Razzari, G. Sharma, R. Morandotti, et al., "Effective mass anisotropy of hot electrons in nonparabolic conduction bands of n-doped InGaAs films using ultrafast terahertz pump-probe techniques," Physical review letters, vol. 107, p. 107401, 2011.
[26] M. Woerner, W. Kuehn, P. Bowlan, K. Reimann, and T. Elsaesser, "Ultrafast two-dimensional terahertz spectroscopy of elementary excitations in solids," New Journal of Physics, vol. 15, p. 025039, 2013.
[27] C. Vicario, C. Ruchert, F. Ardana-Lamas, P. M. Derlet, B. Tudu, J. Luning, et al., "Off-resonant magnetization dynamics phase-locked to an intense phase-stable terahertz transient," Nature Photonics, vol. 7, pp. 720-723, 2013.
[28] D. You, D. Dykaar, R. Jones, and P. Bucksbaum, "Generation of high-power sub-single-cycle 500-fs electromagnetic pulses," Optics letters, vol. 18, pp. 290-292, 1993.
[29] T. Löffler, M. Kress, M. Thomson, and H. Roskos, "Efficient terahertz pulse generation in laser-induced gas plasmas," Acta Phys. Pol. A, vol. 107, pp. 99-108, 2005.
[30] H. Hamster, A. Sullivan, S. Gordon, and R. Falcone, "Short-pulse terahertz radiation from high-intensity-laser-produced plasmas," Physical Review E, vol. 49, p. 671, 1994.
[31] J. T. Darrow, X.-C. Zhang, D. H. Auston, and J. D. Morse, "Saturation properties of large-aperture photoconducting antennas," IEEE Journal of Quantum Electronics, vol. 28, pp. 1607-1616, 1992.
[32] D. Auston, K. Cheung, and P. Smith, "Picosecond photoconducting Hertzian dipoles," Applied physics letters, vol. 45, pp. 284-286, 1984.
[33] D. Grischkowsky, S. Keiding, M. Van Exter, and C. Fattinger, "Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors," JOSA B, vol. 7, pp. 2006-2015, 1990.
[34] H. Hamster, A. Sullivan, S. Gordon, W. White, and R. Falcone, "Subpicosecond, electromagnetic pulses from intense laser-plasma interaction," Physical review letters, vol. 71, p. 2725, 1993.
[35] T. Löffler, F. Jacob, and H. Roskos, "Generation of terahertz pulses by photoionization of electrically biased air," Applied Physics Letters, vol. 77, pp. 453-455, 2000.
[36] T. Löffler and H. Roskos, "Gas-pressure dependence of terahertz-pulse generation in a laser-generated nitrogen plasma," Journal of applied physics, vol. 91, pp. 2611-2614, 2002.
[37] B. I. Greene, J. F. Federici, D. Dykaar, A. Levi, and L. Pfeiffer, "Picosecond pump and probe spectroscopy utilizing freely propagating terahertz radiation," Optics letters, vol. 16, pp. 48-49, 1991.
[38] D. Cook and R. Hochstrasser, "Intense terahertz pulses by four-wave rectification in air," Optics letters, vol. 25, pp. 1210-1212, 2000.
[39] M. Kress, T. Löffler, S. Eden, M. Thomson, and H. G. Roskos, "Terahertz-pulse generation by photoionization of air with laser pulses composed of both fundamental and second-harmonic waves," Optics Letters, vol. 29, pp. 1120-1122, 2004.
[40] C.-S. Yang, C.-M. Chang, P.-H. Chen, P. Yu, and C.-L. Pan, "Broadband terahertz conductivity and optical transmission of indium-tin-oxide (ITO) nanomaterials," Optics express, vol. 21, pp. 16670-16682, 2013.
[41] S. Kono, M. Tani, P. Gu, and K. Sakai, "Detection of up to 20 THz with a low-temperature-grown GaAs photoconductive antenna gated with 15 fs light pulses," Applied Physics Letters, vol. 77, pp. 4104-4106, 2000.
[42] J. Dai, X. Xie, and X.-C. Zhang, "Detection of broadband terahertz waves with a laser-induced plasma in gases," Physical review letters, vol. 97, p. 103903, 2006.
[43] R. Terhune, P. Maker, and C. Savage, "Optical harmonic generation in calcite," Physical Review Letters, vol. 8, p. 404, 1962.
[44] A. Nahata and T. F. Heinz, "Detection of freely propagating terahertz radiation by use of optical second-harmonic generation," Optics letters, vol. 23, pp. 67-69, 1998.
[45] N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, et al., "Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”," Applied Physics Letters, vol. 92, p. 011131, 2008.
[46] C.-Y. Li, D. V. Seletskiy, and M. Sheik-Bahae, "Air-breakdown coherent detection of terahertz using controlled optical bias," in SPIE OPTO, 2013, pp. 86231V-86231V-6.
[47] J. Liu and X.-C. Zhang, "Plasma characterization using terahertz-wave-enhanced fluorescence," Applied Physics Letters, vol. 96, p. 041505, 2010.
[48] J. Liu and X.-C. Zhang, "Terahertz-radiation-enhanced emission of fluorescence from gas plasma," Physical review letters, vol. 103, p. 235002, 2009.
[49] J. Liu, B. Clough, and X.-C. Zhang, "Enhancement of photoacoustic emission through terahertz-field-driven electron motions," Physical Review E, vol. 82, p. 066602, 2010.
[50] B. Clough, J. Liu, and X.-C. Zhang, "Laser-induced photoacoustics influenced by single-cycle terahertz radiation," Optics letters, vol. 35, pp. 3544-3546, 2010.
[51] K.-Y. Kim, J. H. Glownia, A. J. Taylor, and G. Rodriguez, "Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields," Optics Express, vol. 15, pp. 4577-4584, 2007.
[52] P. G. de Alaiza Martínez, I. Babushkin, L. Bergé, S. Skupin, E. Cabrera-Granado, C. Köhler, et al., "Boosting terahertz generation in laser-field ionized gases using a sawtooth wave shape," Physical review letters, vol. 114, p. 183901, 2015.
[53] W. Cheng-Liang, Y. Zhen-Gang, L. Jin-Song, W. Sheng-Lie, and W. Ke-Jia, "Theoretical investigation on generating terahertz radiation from gas plasma induced by three-color ultrashort lasers," Chinese Physics B, vol. 24, p. 088703, 2015.
[54] H. Wang, K. Wang, J. Liu, H. Dai, and Z. Yang, "Theoretical research on terahertz air-breakdown coherent detection with the transient photocurrent model," Optics express, vol. 20, pp. 19264-19270, 2012.
[55] V. Andreeva, O. Kosareva, N. Panov, D. Shipilo, P. Solyankin, M. Esaulkov, et al., "Ultrabroad terahertz spectrum generation from an air-based filament plasma," Physical review letters, vol. 116, p. 063902, 2016.
[56] L. Bergé, S. Skupin, C. Köhler, I. Babushkin, and J. Herrmann, "3D numerical simulations of THz generation by two-color laser filaments," Physical review letters, vol. 110, p. 073901, 2013.
[57] L. A. Johnson, J. P. Palastro, T. M. Antonsen, and K.-Y. Kim, "THz generation by optical Cherenkov emission from ionizing two-color laser pulses," Physical Review A, vol. 88, p. 063804, 2013.
[58] A. Nguyen, P. Martinez, J. Dechard, I. Thiele, I. Babushkin, S. Skupin, et al., "Spectral dynamics of THz pulses generated by two-color laser filaments in air: The role of Kerr nonlinearities and pump wavelength," arXiv preprint arXiv:1611.05851, 2016.
[59] C. D’Amico, A. Houard, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, et al., "Conical forward THz emission from femtosecond-laser-beam filamentation in air," Physical review letters, vol. 98, p. 235002, 2007.
[60] K.-Y. Kim, A. Taylor, J. Glownia, and G. Rodriguez, "Coherent control of terahertz supercontinuum generation in ultrafast laser–gas interactions," Nature photonics, vol. 2, pp. 605-609, 2008.
[61] A. Houard, Y. Liu, B. Prade, and A. Mysyrowicz, "Polarization analysis of terahertz radiation generated by four-wave mixing in air," Optics letters, vol. 33, pp. 1195-1197, 2008.
[62] J. Dai, N. Karpowicz, and X.-C. Zhang, "Coherent polarization control of terahertz waves generated from two-color laser-induced gas plasma," Physical Review Letters, vol. 103, p. 023001, 2009.
[63] J. F. Federici, "Review of four-wave mixing and phase conjugation in plasmas," IEEE transactions on plasma science, vol. 19, pp. 549-564, 1991.
[64] A. Debayle, L. Gremillet, L. Bergé, and C. Köhler, "Analytical model for THz emissions induced by laser-gas interaction," Optics express, vol. 22, pp. 13691-13709, 2014.
[65] A. V. Balakin, A. V. Borodin, I. A. Kotelnikov, and A. P. Shkurinov, "Terahertz emission from a femtosecond laser focus in a two-color scheme," JOSA B, vol. 27, pp. 16-26, 2010.
[66] P. Sprangle, J. Penano, B. Hafizi, and C. Kapetanakos, "Ultrashort laser pulses and electromagnetic pulse generation in air and on dielectric surfaces," Physical Review E, vol. 69, p. 066415, 2004.
[67] C. Amico, A. Houard, S. Akturk, Y. Liu, J. Le Bloas, M. Franco, et al., "Forward THz radiation emission by femtosecond filamentation in gases: theory and experiment," New Journal of Physics, vol. 10, p. 013015, 2008.
[68] M. Li, W. Li, Y. Shi, P. Lu, H. Pan, and H. Zeng, "Verification of the physical mechanism of THz generation by dual-color ultrashort laser pulses," Applied Physics Letters, vol. 101, p. 161104, 2012.
[69] X. Xie, J. Dai, and X.-C. Zhang, "Coherent control of THz wave generation in ambient air," Physical Review Letters, vol. 96, p. 075005, 2006.
[70] K.-Y. Kim, "Generation of coherent terahertz radiation in ultrafast laser-gas interactionsa)," Physics of Plasmas (1994-present), vol. 16, p. 056706, 2009.
[71] U. Sapaev, A. Husakou, and J. Herrmann, "Combined action of the bound-electron nonlinearity and the tunnel-ionization current in low-order harmonic generation in noble gases," Optics express, vol. 21, pp. 25582-25591, 2013.
[72] S. Wilks, "Simulations of ultraintense laser–plasma interactions," Physics of Fluids B: Plasma Physics, vol. 5, pp. 2603-2608, 1993.
[73] Y. Liu, A. Houard, M. Durand, B. Prade, and A. Mysyrowicz, "Maker fringes in the Terahertz radiation produced by a 2-color laser field in air," Optics express, vol. 17, pp. 11480-11485, 2009.
[74] Q. Wu, T. Hewitt, and X. C. Zhang, "Two‐dimensional electro‐optic imaging of THz beams," Applied Physics Letters, vol. 69, pp. 1026-1028, 1996.
[75] H. Du and N. Yang, "Optical ionization evolution effect on photocurrent produced from two-color femtosecond laser pulses," Frontiers of Optoelectronics, vol. 8, pp. 93-97, 2015.
[76] D. Schumacher and P. Bucksbaum, "Phase dependence of intense-field ionization," Physical Review A, vol. 54, p. 4271, 1996.
[77] P. Corkum, N. Burnett, and F. Brunel, "Above-threshold ionization in the long-wavelength limit," Physical review letters, vol. 62, p. 1259, 1989.
[78] C. Lu, S. Zhang, Y. Yao, S. Xu, T. Jia, J. Ding, et al., "Effect of two-color laser pulse intensity ratio on intense terahertz generation," RSC Advances, vol. 5, pp. 1485-1490, 2015.
[79] H. Dai and J. Liu, "Phase dependence of the generation of terahertz waves from two-color laser-induced gas plasma," Journal of Optics, vol. 13, p. 055201, 2011.
[80] A. Borodin, N. Panov, O. Kosareva, V. Andreeva, M. Esaulkov, V. Makarov, et al., "Transformation of terahertz spectra emitted from dual-frequency femtosecond pulse interaction in gases," Optics letters, vol. 38, pp. 1906-1908, 2013.
[81] L. Zhang, G.-L. Wang, and X.-X. Zhou, "Optimized two-and three-colour laser pulses for the intense terahertz wave generation," Journal of Modern Optics, pp. 1-7, 2016.
[82] W. Cheng-Liang, Y. Zhen-Gang, L. Jin-Song, W. Sheng-Lie, and W. Ke-Jia, "Cheng-Liang, W., et al. (2015). "Theoretical investigation on generating terahertz radiation from gas plasma induced by three-color ultrashort lasers." Chinese Physics B 24(8): 088703.," Chinese Physics B, vol. 24, p. 088703, 2015.
[83] G. Rodriguez and G. L. Dakovski, "Scaling behavior of ultrafast two-color terahertz generation in plasma gas targets: energy and pressure dependence," Optics express, vol. 18, pp. 15130-15143, 2010.
[84] P. Han and X.-C. Zhang, "Coherent, broadband midinfrared terahertz beam sensors," Applied physics letters, vol. 73, pp. 3049-3051, 1998.
[85] Q. Wu and X. C. Zhang, "Ultrafast electro‐optic field sensors," Applied physics letters, vol. 68, pp. 1604-1606, 1996.
[86] S.-F. Zhao, L. Liu, and X.-X. Zhou, "Multiphoton and tunneling ionization probability of atoms and molecules in an intense laser field," Optics Communications, vol. 313, pp. 74-79, 2014.
[87] I. Grguras, A. R. Maier, C. Behrens, T. Mazza, T. Kelly, P. Radcliffe, et al., "Ultrafast X-ray pulse characterization at free-electron lasers," Nature Photonics, vol. 6, p. 852, 2012.
[88] M. C. Hoffmann, N. C. Brandt, H. Y. Hwang, K.-L. Yeh, and K. A. Nelson, "Terahertz kerr effect," Applied Physics Letters, vol. 95, p. 231105, 2009.
[89] C. Guo, M. Li, J. Nibarger, and G. N. Gibson, "Single and double ionization of diatomic molecules in strong laser fields," Physical Review A, vol. 58, p. R4271, 1998.
[90] R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, "Absolute and relative nonlinear optical coefficients of KDP, KD* P, BaB/sub 2/O/sub 4/, LiIO/sub 3/, MgO: LiNbO/sub 3/, and KTP measured by phase-matched second-harmonic generation," IEEE Journal of Quantum Electronics, vol. 26, pp. 922-933, 1990.
[91] S. E. Ralph and D. Grischkowsky, "THz spectroscopy and source characterization by optoelectronic interferometry," Applied physics letters, vol. 60, pp. 1070-1072, 1992.
[92] A. Bartels, A. Thoma, C. Janke, T. Dekorsy, A. Dreyhaupt, S. Winnerl, et al., "High-resolution THz spectrometer with kHz scan rates," Optics Express, vol. 14, pp. 430-437, 2006.
[93] Y.-S. Lee, Principles of terahertz science and technology vol. 170: Springer Science & Business Media, 2009.
[94] H. Bakker, G. Cho, H. Kurz, Q. Wu, and X.-C. Zhang, "Distortion of terahertz pulses in electro-optic sampling," JOSA B, vol. 15, pp. 1795-1801, 1998.
[95] D. Marple, "Refractive index of ZnSe, ZnTe, and CdTe," Journal of Applied Physics, vol. 35, pp. 539-542, 1964.
[96] E. D. Palik, Handbook of optical constants of solids vol. 3: Academic press, 1998.
[97] K. Strössner, S. Ves, and M. Cardona, "Refractive index of GaP and its pressure dependence," Physical Review B, vol. 32, p. 6614, 1985.
[98] D. E. Aspnes and A. Studna, "Dielectric functions and optical parameters of si, ge, gap, gaas, gasb, inp, inas, and insb from 1.5 to 6.0 ev," Physical review B, vol. 27, p. 985, 1983.
[99] S. Casalbuoni, H. Schlarb, B. Schmidt, P. Schmüser, B. Steffen, and A. Winter, "Numerical studies on the electro-optic detection of femtosecond electron bunches," Physical Review Special Topics-Accelerators and Beams, vol. 11, p. 072802, 2008.
[100] S. M. Teo, B. K. Oforiokai, C. A. Werley, and K. A. Nelson, "Invited Article: Single-shot THz detection techniques optimized for multidimensional THz spectroscopy," Review of Scientific Instruments, vol. 86, p. 051301, 2015.
[101] X.-Y. Peng, O. Willi, M. Chen, and A. Pukhov, "Optimal chirped probe pulse length for terahertz pulse measurement," Optics express, vol. 16, pp. 12342-12349, 2008.
[102] B. Steffen, V. Arsov, G. Berden, W. A. Gillespie, S. Jamison, A. M. MacLeod, et al., "Electro-optic time profile monitors for femtosecond electron bunches at the soft x-ray free-electron laser FLASH," Physical Review Special Topics-Accelerators and Beams, vol. 12, p. 032802, 2009.
[103] D. H. Auston, K. Cheung, J. Valdmanis, and D. Kleinman, "Cherenkov radiation from femtosecond optical pulses in electro-optic media," Physical Review Letters, vol. 53, p. 1555, 1984.
[104] M. Van Exter, C. Fattinger, and D. Grischkowsky, "Terahertz time-domain spectroscopy of water vapor," Optics letters, vol. 14, pp. 1128-1130, 1989.
[105] J. Kroll, J. Darmo, and K. Unterrainer, "High-performance terahertz electro-optic detector," Electronics Letters, vol. 40, pp. 763-764, 2004.
[106] X. Lu and X.-C. Zhang, "Balanced terahertz wave air-biased-coherent-detection," Applied Physics Letters, vol. 98, p. 151111, 2011.