研究生: |
黃姿庭 Huang, Tzu-Ting |
---|---|
論文名稱: |
以成交量預測股票波動率—以台灣股票市場為例 Using trading volume to forecast stock volatility –take Taiwan stock market as an example |
指導教授: |
蔡子晧
Tsai, Tzu-Hao |
口試委員: |
余士迪
Yu, Shih-Ti 謝佩芳 Hsieh, Pei-Fang 李彥賢 Lee, Yen-Hsien |
學位類別: |
碩士 Master |
系所名稱: |
科技管理學院 - 財務金融 Master Program of Finance and Banking |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 32 |
中文關鍵詞: | 波動率 、Fama-French三因子模型 、成交量 |
外文關鍵詞: | stock volatility, Fama-French three-factor model, trading volume |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本次研究目的旨在驗證在已知上期股票波動率會影響本期股票波動率此前提之下,增加上期股票成交量變動率並以 Fama-French 三因子模型中三個因子 (市場風險溢酬、規模溢酬及淨值市價比溢酬) 平方作為控制變數,檢測新增的自變數是否能夠解釋並使預測未來股票波動率較為準確。藉由迴歸分析可以發現,上期股票波動率對於本期股票波動率有正向影響力。而在上期成交量變動率方面,則為負顯著。最後,Fama-French 三因子平方方面,最多股票在上期規模溢酬平方正顯著、上期市場風險溢酬平方次之、上期淨值市價比溢酬平方最少,且後兩因子均各有三檔股票為負顯著。最後再以移動視窗法比較有無上期成交量變動率迴歸模型兩者之樣本外資料預測能力,發現不含該自變數之模型預測能力較好,但相距不大,故上期成交量變動率對於預測波動率無明顯助益。
We aim to verify that the last period of stock volatility is known to affect the stock volatility of the current period, to increase the last period of volume change rate, and to use the square of the three factors in the Fama-French three-factor model(excess return on the market, the size of firms and book-to-market values)as the control variable, to detect whether the new independent variable can explain and predict future stock volatility better. Through regression analysis, it can be found that the last period of stock volatility has a significant positive effect on the stock volatility of the current period. For the last period of volume change rate, it was negatively significant. Finally, in terms of the square of the three factors of Fama-French, the most positive significant factor that stocks have is the last period of the size of firms, the second is the last period of excess return on the market, last period of book-to-market values is the least. And 3 stocks in the latter two factors are negative significant. Finally, we used the moving window method to verify whether the predictive model with the change rate of the previous stock volume has better predictive power. It is found that the prediction ability of the predictive model without the change rate of the previous stock volume is better, so the change rate of the previous stock volume does not help predict the volatility.
1.陳旭昇 (2013). 時間序列分析: 總體經濟與財務金融之應用, 臺灣東華.
2.Admati, A. R. and P. Pfleiderer (1988). "A theory of intraday patterns: Volume and price variability." The review of financial studies 1(1): 3-40.
3.Bessembinder, H. and P. J. Seguin (1993). "Price volatility, trading volume, and market depth: Evidence from futures markets." Journal of Financial and Quantitative Analysis 28(1): 21-39.
4.Bollerslev, T. (1986). "Generalized autoregressive conditional heteroskedasticity." Journal of econometrics 31(3): 307-327.
5.Clark, P. K. (1973). "A subordinated stochastic process model with finite variance for speculative prices." Econometrica: Journal of the econometric society: 135-155.
6.Engle, R. F. (1982). "Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation." Econometrica: Journal of the econometric society: 987-1007.
7.Granger, C. W. and P. Newbold (1974). "Spurious regressions in econometrics." Journal of econometrics 2(2): 111-120.
8.Hull, J. C. (2003). Options futures and other derivatives, Pearson Education India.
9.Karpoff, J. M. (1987). "The relation between price changes and trading volume: A survey." Journal of Financial and Quantitative Analysis 22(1): 109-126.
10.Kwiatkowski, D., et al. (1992). "Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root?" Journal of econometrics 54(1-3): 159-178.
11.Morgan, J. (1995). "RiskMetrics Monitor." Fourth Quarter.
12.Nelson, C. R. and C. R. Plosser (1982). "Trends and random walks in macroeconmic time series: some evidence and implications." Journal of monetary economics 10(2): 139-162.
13.Nelson, D. B. (1991). "Conditional heteroskedasticity in asset returns: A new approach." Econometrica: Journal of the econometric society: 347-370.
14.Rabemananjara, R. and J.-M. Zakoian (1993). "Threshold ARCH models and asymmetries in volatility." Journal of applied econometrics 8(1): 31-49.
15.Said, S. E. and D. A. Dickey (1984). "Testing for unit roots in autoregressive-moving average models of unknown order." Biometrika 71(3): 599-607.
16.Shaikh, I. and P. Padhi (2015). "The implied volatility index: Is ‘investor fear gauge’or ‘forward-looking’?" Borsa Istanbul Review 15(1): 44-52.
17.Xing, Y., et al. (2010). "What does the individual option volatility smirk tell us about future equity returns?" Journal of Financial and Quantitative Analysis 45(3): 641-662.
18.Yin-Wong, C. and M. D. Chinn (1996). "Deterministic, stochastic, and segmented trends in aggregate output: a cross-country analysis." Oxford Economic Papers 48(1): 134-162.