簡易檢索 / 詳目顯示

研究生: 鄭文秀
論文名稱: 微奈米鑽石場發射端製作及其特性研究
Characteristic study and fabrication of field emitters by ultra-nano crystalline and micro-crystalline diamond
指導教授: 蔡宏營
口試委員: 郭桂林
曾仕君
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 74
中文關鍵詞: 鑽石薄膜化學氣相沈積場發射側向
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文研究中是以微波電漿輔助化學氣相沈積法,成長超微奈米鑽石薄膜並製作超微奈米鑽石平面場發射元件。我們使用不同的機台參數來成長鑽石薄膜,使新的機台達到穩定的狀態,並探討其電子場發射特性。實驗中發現,成長超奈米鑽石薄膜以及微米鑽石薄膜,分別在功率120 W、壓力130 torr以及功率120 W、壓力80 torr時,其表面型態和拉曼檢測結果最好,且機台相對較穩定。另外,進而使用兩種參數長成的複合鑽石薄膜,其電子場發射特性也較佳。
    待至機台穩定,且找出較佳的成長參數後,則選定其組合參數,製作微奈米複合鑽石薄膜為陰極材料的鑽石平面場發射元件。為了降低製作成本,本研究首先將以雙面拋光矽片為基板,成長完鑽石薄膜的試片,利用陽極接合儀器和Pyrex 7740玻璃接合在一起,以取代昂貴的SOI矽片;接著再利用犧牲層結構來製作出實驗需要的兩極結構,並討論不同幾何結構對元件場發射特性的影響,另外也藉由改變針尖之間的間距以及針尖的角度銳、鈍,來觀察電流大小和電流密度的變化。
    最終利用了簡單有效的製程,且得到當元件擁有適當的針尖高度和兩極距離,其針尖距離約為24 μm的結構配置有最佳的場發射特性,起始電場為46 V/μm,可達最大電流為39.5 μA(208.4 mA/cm2)。


    Abstract II 致謝 II 目 錄 VII 表目錄 X 圖目錄 XI 第1章 前言 1 1.1研究背景 1 1.2研究動機 2 第2章 文獻回顧 5 2.1鑽石薄膜的結構與特性 5 2.1.1鑽石薄膜的分類 5 2.1.2鑽石的基本材料特性 9 2.2鑽石薄膜的成核理論與合成方法 12 2.2.1鑽石薄膜的成核 12 2.2.2鑽石薄膜的合成 15 2.3電子場發射理論 19 2.3.1場發射基礎理論 19 2.3.2陰極發射端尺寸效應 22 2.3.3場發射遮蔽效應 24 2.3.4鑽石的負電子親和力 29 第3章 研究方法及實驗步驟 30 3.1陰極發射端製作 30 3.1.1實驗流程 30 3.1.2鑽石薄膜合成 31 3.1.3微波電漿輔助化學氣相沈積系統生長薄膜參數測試 33 3.1.4微波電漿輔助化學氣相沈積系統操作過程及介紹 35 3.1.5光罩設計 37 3.2元件製作 38 3.3薄膜及元件之各項特性分析 39 3.3.1場發射掃描電子顯微鏡分析 39 3.3.2拉曼分析 40 3.3.3四點探針表面電性分析 42 3.3.4電子場發射特性分析 42 第4章 結果與討論 44 4.1微波電漿輔助化學氣相沈積系統穩定實驗 44 4.2UNCD/MCD薄膜之合成及成長於不同尺寸基板的探討 46 4.2.1UNCD/MCD鑽石薄膜測試及特性分析 46 4.2.2薄膜成長於不同基板尺寸的探討 49 4.3場發射元件之兩極結構製程討論 53 4.3.1鑽石薄膜合成 53 4.3.2矽基板與玻璃基板接合 54 4.3.3黃光微影 55 4.3.4金屬、鑽石結構與矽之蝕刻 56 4.3.5Lift-off製程 59 4.4場發射特性分析 60 第5章 結論與未來展望 68 參考文獻 70

    [1] K. E. Spear and J. P. Dismukes, Synthetic diamond: emerging CVD science and technology: Wiley, (1994).
    [2] K. Chakrabarti, R. Chakrabarrti, K. K. Chattopadhyay, S. Chaudhrui, andA. K. Pal, “Nano-diamond films produced from CVD of camphor,” Diamond and Related materials, 7, 845-852, (1998).
    [3] V. Ralchenko, A. Karabutov, I. Vlasov, V. Frolov, V. Konov, S. Gordeev,S. Zhukov, and A. Dementjev, “Diamond–carbon nanocomposites: applications for diamond film deposition and field electron emission,” Diamond and Related materials, 8, 1496-1501, (1999).
    [4] D. M. Gruen, Annu, “Nanocrystalline Diamond films1,” Annual Review of Materials Science, 29, 211-259, (1999).
    [5] S. G. Wang, Q. Zhan, S. F. Yoon, J. Ahn, Q. Wang, Q. Zhou, and D. J.Yang, “Electron Field Emission Properties of Nano-, Submicro- and Micro-Diamond Films, ”Physical Status Solidi, 193, 546-551, (2002).
    [6] J. A. Carlisle and O. Auciello, “Ultrananocrystalline Diamond-Properties and Applications in Biomedical Devices,” The Electrochemical Society Interface • Spring, 12, 28-31, (2003).
    [7] V. Mortet, O. Elmazria, M. Nesladek, M. B. Assouar, G. Vanhoyland, J.D’Haen, M. D. Olieslaeger, and P. Alnot, “Surface acoustic wave propagation in aluminum nitride-unpolished freestanding diamond structures,” Applied Physics Letters, 81, 1720-1722, (2002).
    [8] W. Zhu, G. P. Kochanski, and S. Jin, “Low-Field Electron Emission from Undoped Nanostructured Diamond,” Science, 282, 1471-1473, (1998).
    [9] A. R. Krauss, O. Auciello, M. Q. Ding, D. M. Gruen, Y. Huang, V. V.Zhirnov, E. I. Givargizov, A. Breskin, R. Chechen, E. Shefer, V. Konov, S.Pimenov, A. Karabutov, A. Rakhimov, and N. Suetin, “Electron field emission for ultrananocrystalline diamond films,” Journal of Applied Physics, 89, 2958-2967, (2001).
    [10] T. D. Corrigan, D. M. Gruen, A. R. Krauss, P. Zapoa, and R. P. H. Chang, “The effect of nitrogen addition to AryCH4 plasmas on the growth, morphology and field emission of ultrananocrystalline diamond,” Diamond and Related Materials, 11, 43-48, (2002).
    [11] Y. C. Lee, S. J. Lin, C. T. Chia, H. F. Cheng, and I. N. Lin, “Synthesis and electron field emission properties of nanodiamond films,” Diamond and Related Materials, 13, 2100-2104, (2004).
    [12] Q. H. Fan, A. Fernandes, E. Pereira, J. Gracio, “Adherent diamond coating on copper using an interlayer,” Vacuum ,52, 193-198 , (1999).
    [13] V. I. Konov, A. A. Smolin, V. G. Ralchenko, S.M. Pimenov and E. D. Obraztsova , “Dc-arc plasma deposition of smooth nanocrystalline diamond films,” Diamond and Related Materials , 4, 1073-1078, (1995).
    [14] T. S. Yang, J. Y. Lai, C. L. Cheng, and M. S. Wong, “Growth of faceted, ballas-like and nanocrystalline diamond films deposited in CH4/H2/Ar MPCVD,” Diamond and Related Materials, 10, 2161-2166,(2001).
    [15] C. R. Lin, W. H. Liao, D. H. Wei, C. K. Chang, W. C. Fang, C. L. Chen, C. L. Dong, J. L. Chen and J. H. Guo, “ Improvement on the synthesis technique of ultrananocrystalline diamond films by using microwave plasma jet chemical vapor deposition,” Journal of Crystal Growth, 326, 212–217, (2011).
    [16] K. Wu, E. G. Wang, Z. X. Cao, Z. L. Wang, and X. Jiang, “Microstructure and its effect on field electron emission of grain-size-controlled nanocrystalline diamond films,” Journal of Applied Physics, 88, 2967-2974, (2000).
    [17] D. Zhou, T. G. McCauley, L. C. Qin and A. R. Krauss, “Synthesis and electron field emission of nanocrystalline diamond thin films grown from N2/CH4 microwave plasmas,” Journal of Applied Physics, 82, 4546-4550, (1997).
    [18] R. Krauss, O. Auciello, D. M. Gruen, A. Jayatissa, A. Sumant, J. Tucek, D. C. Mancini, N. Moldovan, A. Erdemir, D. Ersoy, M. N. Gardos, H.G. Busmann, E.M. Meyer and M. Q. Ding, “Ultrananocrystalline diamond thin films for MEMS and moving mechanical assembly devices,” Diamond and Related Materials, 10, 1952-1961, (2001).
    [19] C. C. Liu, N. H. Tai, C. Y. Lee and I. N. Lin, “The development and application of the ultra-nano crystalline diamond film in field emission device,” National Tsing Hua University, (2007).
    [20] H. O. Pierson, “Diamond-like carbon (DLC)” in Handbook of carbon, graphite, diamond and fullerenes, Noyes publications, 337-355,(1993).
    [21] Fabrication and Characterization of the olycrystalline-Diamond-Film MISFET
    [22] E. Anger, A. Gicquel, Z. Z. Wang and M. F. Ravet, “Chemical and morphological modifications of silicon wafers treated by ultrasonic impacts of powders: consequences on diamond nucleation,” Diamond and Related Materials, 4, 759-764, (1995).
    [23] S. Iijima, Y. Aikawa, and K. Baba, “Early formation of chemical vapor-deposition daimond films,” Applied Physics Letters, 57, 2646-2648, (1990).
    [24] J. H. Je and G. Y. Lee, “Microstructures of diamond films deposited on (100) silicon wafer by microwave plasma-enhanced chemical vapour deposition,” Journal of Materials Science, 27, 6324-6330,(1993).
    [25] Y. Chakk, R. Brener and A. Hoffman, “Enhancement of diamond nucleation by ultrasonic substrate abrasion with a mixture of metal and diamond particles,” Applied Physics Letters, 66, 2819-2821, (1995).
    [26] Y. Chakk, R. Brener and A. Hoffman, “Mechanism of diamond formation on substrates abraded with a mixture of diamond and metal powders,” Diamond and Related Materials, 5, 286-291, (1996).
    [27] Y. Chakk, M. Folman and A. Hoffman, “Kinetics of the initial stages of CVD diamond growth on non-diamond substrates- surface catalytic effects and homoepitaxy,” Diamond and Related Materials, 6, 681-686, (1997).
    [28] S. J. Harris, “Mechanism for diamond growth from methyl Radicals, ” Applied Physics Letters, 56, 2298-2300, (1990).
    [29] F. G. Celii and J. E. Butler, “Direct monitoring of CH3 in afilament-assisted diamond chemical vapor deposition reactor,” Journal of Applied Physics, 71, 2877-2883, (1992).
    [30] T. P. Ong, F. L. Xiong, and R. P. H. Chang, “Mechanism for diamond nucleation and growth on single crystal copper surface implanted with carbon,” Applied Physics Letters, 60, 2083-2085, (1992).
    [31] S. M. Pimenov, A. A. Smolin, V. G. Ralchenko, V. I. Konov, S. V. Likhanski, I. A. Veselovski, G. A. Sokolina, S. V. Bantsekov and B. V. Spitsyn, “UV Laser Processing of Diamond Films - Effects of Irradiation Conditions on the Properties of Laser-Treated Diamond Film Surfaces,” Diamond and Related Materials, 2, 291-297, (1993).
    [32] S. Yugo, T. Kimura and H. Kanai, “Effects of hydrogen plasma on the diamond nucleation by chemical vapour deposition,” Diamond and Related materials, 1, 929-932, (1992).
    [33] M. Kamo, Y. Sato, S. Matsumoto, and N. Setaka, “Diamond Synthesis from Gas-Phase in Microwave Plasma,” Journal of Crystal Growth, 62, 642-644, (1983).
    [34] S. Matsumoto, “Chemical Vapor-Deposition of Diamond in RF Glow-Discharge,” Journal of Materials Science Letters, 4, 600-602, (1985).
    [35] J. Wei, H. Kawarada, J. Suzuki and A. Hiraki, “Growth of diamond films at low pressure using magneto-microwave plasma cvd,” Journal of Crystal Growth, 99, 1201-1205, (1990).
    [36] A. Sawabe and T. Inuzuka, “Growth of Diamond Thin-Films by Electron Assisted Chemical Vapor-Deposition, "Applied Physics Letters, 46, 146-147, (1985).
    [37] K. Suzuki, A. Sawabe, H. Yasuda and T. Inuzuka, “Growth of diamond thin films by dc plasma chemicai vapor deposition,” Applied Physics Letters, 50, 728-729, (1987).
    [38] H. Liu and D. S. Dandy, Diamond Chemical Vapor Deposition : Nucleation and Early Growth Stages, Willian Andrew, (1995).
    [39] I. N. Gou, “Photoluminescence Characteristics of ZnO Thin Films by Reactive RF Magnetron Sputtering,” National Sun Yat-Sen University, (2004).
    [40] J. He, P. H. Cutler and N. M. Miskovsky , “Generalization of Fowler--Nordheim field emission theory for nonplanar metal emitters,” Applied Physics Letters, 59, 1644-1646, (1991).
    [41] K. L. Jensen and E. G. Zaidman, “Field emission from an elliptical boss: Exact versus approximate treatments,” Applied Physics Letters, 63, 702-704, (1993).
    [42] K. L. Jensen and E. G. Zaidman, “Field emission from an elliptical boss: Exact and approximate forms for area factors and currents,” Journal of Vacuum Science and Technology B, 12, 776-780, (1994).
    [43] K. L. Jensen and E. G. Zaidman, “Analytic expressions for emission in sharp field emitter diodes,” Journal of Applied Physics, 77, 3569-3571, (1995).
    [44] T. S. Fisher and D. G. Walker, “Thermal and Electrical Energy Transport and Conversion in Nanoscale Electron Field Emission Processes,” Journal of Heat Transfer, 124, 954-962, (2002).
    [45] T. S. Fisher, “Influence of nanoscale geometry on the thermodynamics of electron field emission,” Applied Physics Letters, 79, 3699-3701, (2001).
    [46] L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, E. Schaller, L. Schlapbach, H. Kind, J. M. Bonard and K. Kern, “Scanning field emission from patterned carbon nanotube films,” Applied Physics Letters, 76, 2071-2073, (2000).
    [47] J. S. Suh, K. S. Jeong, J. S. Lee and I. Han, “Study of the field-screening effect of highly ordered carbon nanotube arrays,” Applied Physics Letters, 80, 2392-2394, (2002).
    [48] R. C. Smith and S. R. P. Silva, “Maximizing the electron field emission performance of carbon nanotube arrays,” Applied Physics Letters, 94, 133104-1-133104-3, (2009).
    [49] M. W. Geis, N. N. Efremow, J. D. Woodhouse, M. D. Mcaleese, M. Marchywka, D. G. Socker and J. F. Hochedez, “Diamond Cold-Cathode,” IEEE Electron Device Letters, 12, 456-459, (1991).
    [50] S. Iannazzo, “Review: A Survey of the Present Status of Vacuum Microelectonics,” Solid-State Electronics, 36, 301-320, (1993).
    [51] N. Ghosh, W. P. Kang and J. L. Davidson, “Fabrication and implementation of nanodiamond lateral field emission diode for logic OR function,” Diamond and Related materials, 23, 120-124, (2012).
    [52] L. S. Pan and D. R. Kania, Diamond: electronic properties and applications: Kluwer Academic Publishers, (1995).
    [53] H. F. Cheng, H. Y. Chiang, C. C. Homg, H. C. Chen, C. S. Wang and I. N. Lin, “Enhanced electron field emission properties by tuning the microstructure of ultrananocrystalline diamond film,” Journal of Applied Physics, 109, 033711-1-033711-8, (2011).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE