研究生: |
鄭文秀 |
---|---|
論文名稱: |
微奈米鑽石場發射端製作及其特性研究 Characteristic study and fabrication of field emitters by ultra-nano crystalline and micro-crystalline diamond |
指導教授: | 蔡宏營 |
口試委員: |
郭桂林
曾仕君 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 74 |
中文關鍵詞: | 鑽石薄膜 、化學氣相沈積 、場發射 、側向 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文研究中是以微波電漿輔助化學氣相沈積法,成長超微奈米鑽石薄膜並製作超微奈米鑽石平面場發射元件。我們使用不同的機台參數來成長鑽石薄膜,使新的機台達到穩定的狀態,並探討其電子場發射特性。實驗中發現,成長超奈米鑽石薄膜以及微米鑽石薄膜,分別在功率120 W、壓力130 torr以及功率120 W、壓力80 torr時,其表面型態和拉曼檢測結果最好,且機台相對較穩定。另外,進而使用兩種參數長成的複合鑽石薄膜,其電子場發射特性也較佳。
待至機台穩定,且找出較佳的成長參數後,則選定其組合參數,製作微奈米複合鑽石薄膜為陰極材料的鑽石平面場發射元件。為了降低製作成本,本研究首先將以雙面拋光矽片為基板,成長完鑽石薄膜的試片,利用陽極接合儀器和Pyrex 7740玻璃接合在一起,以取代昂貴的SOI矽片;接著再利用犧牲層結構來製作出實驗需要的兩極結構,並討論不同幾何結構對元件場發射特性的影響,另外也藉由改變針尖之間的間距以及針尖的角度銳、鈍,來觀察電流大小和電流密度的變化。
最終利用了簡單有效的製程,且得到當元件擁有適當的針尖高度和兩極距離,其針尖距離約為24 μm的結構配置有最佳的場發射特性,起始電場為46 V/μm,可達最大電流為39.5 μA(208.4 mA/cm2)。
[1] K. E. Spear and J. P. Dismukes, Synthetic diamond: emerging CVD science and technology: Wiley, (1994).
[2] K. Chakrabarti, R. Chakrabarrti, K. K. Chattopadhyay, S. Chaudhrui, andA. K. Pal, “Nano-diamond films produced from CVD of camphor,” Diamond and Related materials, 7, 845-852, (1998).
[3] V. Ralchenko, A. Karabutov, I. Vlasov, V. Frolov, V. Konov, S. Gordeev,S. Zhukov, and A. Dementjev, “Diamond–carbon nanocomposites: applications for diamond film deposition and field electron emission,” Diamond and Related materials, 8, 1496-1501, (1999).
[4] D. M. Gruen, Annu, “Nanocrystalline Diamond films1,” Annual Review of Materials Science, 29, 211-259, (1999).
[5] S. G. Wang, Q. Zhan, S. F. Yoon, J. Ahn, Q. Wang, Q. Zhou, and D. J.Yang, “Electron Field Emission Properties of Nano-, Submicro- and Micro-Diamond Films, ”Physical Status Solidi, 193, 546-551, (2002).
[6] J. A. Carlisle and O. Auciello, “Ultrananocrystalline Diamond-Properties and Applications in Biomedical Devices,” The Electrochemical Society Interface • Spring, 12, 28-31, (2003).
[7] V. Mortet, O. Elmazria, M. Nesladek, M. B. Assouar, G. Vanhoyland, J.D’Haen, M. D. Olieslaeger, and P. Alnot, “Surface acoustic wave propagation in aluminum nitride-unpolished freestanding diamond structures,” Applied Physics Letters, 81, 1720-1722, (2002).
[8] W. Zhu, G. P. Kochanski, and S. Jin, “Low-Field Electron Emission from Undoped Nanostructured Diamond,” Science, 282, 1471-1473, (1998).
[9] A. R. Krauss, O. Auciello, M. Q. Ding, D. M. Gruen, Y. Huang, V. V.Zhirnov, E. I. Givargizov, A. Breskin, R. Chechen, E. Shefer, V. Konov, S.Pimenov, A. Karabutov, A. Rakhimov, and N. Suetin, “Electron field emission for ultrananocrystalline diamond films,” Journal of Applied Physics, 89, 2958-2967, (2001).
[10] T. D. Corrigan, D. M. Gruen, A. R. Krauss, P. Zapoa, and R. P. H. Chang, “The effect of nitrogen addition to AryCH4 plasmas on the growth, morphology and field emission of ultrananocrystalline diamond,” Diamond and Related Materials, 11, 43-48, (2002).
[11] Y. C. Lee, S. J. Lin, C. T. Chia, H. F. Cheng, and I. N. Lin, “Synthesis and electron field emission properties of nanodiamond films,” Diamond and Related Materials, 13, 2100-2104, (2004).
[12] Q. H. Fan, A. Fernandes, E. Pereira, J. Gracio, “Adherent diamond coating on copper using an interlayer,” Vacuum ,52, 193-198 , (1999).
[13] V. I. Konov, A. A. Smolin, V. G. Ralchenko, S.M. Pimenov and E. D. Obraztsova , “Dc-arc plasma deposition of smooth nanocrystalline diamond films,” Diamond and Related Materials , 4, 1073-1078, (1995).
[14] T. S. Yang, J. Y. Lai, C. L. Cheng, and M. S. Wong, “Growth of faceted, ballas-like and nanocrystalline diamond films deposited in CH4/H2/Ar MPCVD,” Diamond and Related Materials, 10, 2161-2166,(2001).
[15] C. R. Lin, W. H. Liao, D. H. Wei, C. K. Chang, W. C. Fang, C. L. Chen, C. L. Dong, J. L. Chen and J. H. Guo, “ Improvement on the synthesis technique of ultrananocrystalline diamond films by using microwave plasma jet chemical vapor deposition,” Journal of Crystal Growth, 326, 212–217, (2011).
[16] K. Wu, E. G. Wang, Z. X. Cao, Z. L. Wang, and X. Jiang, “Microstructure and its effect on field electron emission of grain-size-controlled nanocrystalline diamond films,” Journal of Applied Physics, 88, 2967-2974, (2000).
[17] D. Zhou, T. G. McCauley, L. C. Qin and A. R. Krauss, “Synthesis and electron field emission of nanocrystalline diamond thin films grown from N2/CH4 microwave plasmas,” Journal of Applied Physics, 82, 4546-4550, (1997).
[18] R. Krauss, O. Auciello, D. M. Gruen, A. Jayatissa, A. Sumant, J. Tucek, D. C. Mancini, N. Moldovan, A. Erdemir, D. Ersoy, M. N. Gardos, H.G. Busmann, E.M. Meyer and M. Q. Ding, “Ultrananocrystalline diamond thin films for MEMS and moving mechanical assembly devices,” Diamond and Related Materials, 10, 1952-1961, (2001).
[19] C. C. Liu, N. H. Tai, C. Y. Lee and I. N. Lin, “The development and application of the ultra-nano crystalline diamond film in field emission device,” National Tsing Hua University, (2007).
[20] H. O. Pierson, “Diamond-like carbon (DLC)” in Handbook of carbon, graphite, diamond and fullerenes, Noyes publications, 337-355,(1993).
[21] Fabrication and Characterization of the olycrystalline-Diamond-Film MISFET
[22] E. Anger, A. Gicquel, Z. Z. Wang and M. F. Ravet, “Chemical and morphological modifications of silicon wafers treated by ultrasonic impacts of powders: consequences on diamond nucleation,” Diamond and Related Materials, 4, 759-764, (1995).
[23] S. Iijima, Y. Aikawa, and K. Baba, “Early formation of chemical vapor-deposition daimond films,” Applied Physics Letters, 57, 2646-2648, (1990).
[24] J. H. Je and G. Y. Lee, “Microstructures of diamond films deposited on (100) silicon wafer by microwave plasma-enhanced chemical vapour deposition,” Journal of Materials Science, 27, 6324-6330,(1993).
[25] Y. Chakk, R. Brener and A. Hoffman, “Enhancement of diamond nucleation by ultrasonic substrate abrasion with a mixture of metal and diamond particles,” Applied Physics Letters, 66, 2819-2821, (1995).
[26] Y. Chakk, R. Brener and A. Hoffman, “Mechanism of diamond formation on substrates abraded with a mixture of diamond and metal powders,” Diamond and Related Materials, 5, 286-291, (1996).
[27] Y. Chakk, M. Folman and A. Hoffman, “Kinetics of the initial stages of CVD diamond growth on non-diamond substrates- surface catalytic effects and homoepitaxy,” Diamond and Related Materials, 6, 681-686, (1997).
[28] S. J. Harris, “Mechanism for diamond growth from methyl Radicals, ” Applied Physics Letters, 56, 2298-2300, (1990).
[29] F. G. Celii and J. E. Butler, “Direct monitoring of CH3 in afilament-assisted diamond chemical vapor deposition reactor,” Journal of Applied Physics, 71, 2877-2883, (1992).
[30] T. P. Ong, F. L. Xiong, and R. P. H. Chang, “Mechanism for diamond nucleation and growth on single crystal copper surface implanted with carbon,” Applied Physics Letters, 60, 2083-2085, (1992).
[31] S. M. Pimenov, A. A. Smolin, V. G. Ralchenko, V. I. Konov, S. V. Likhanski, I. A. Veselovski, G. A. Sokolina, S. V. Bantsekov and B. V. Spitsyn, “UV Laser Processing of Diamond Films - Effects of Irradiation Conditions on the Properties of Laser-Treated Diamond Film Surfaces,” Diamond and Related Materials, 2, 291-297, (1993).
[32] S. Yugo, T. Kimura and H. Kanai, “Effects of hydrogen plasma on the diamond nucleation by chemical vapour deposition,” Diamond and Related materials, 1, 929-932, (1992).
[33] M. Kamo, Y. Sato, S. Matsumoto, and N. Setaka, “Diamond Synthesis from Gas-Phase in Microwave Plasma,” Journal of Crystal Growth, 62, 642-644, (1983).
[34] S. Matsumoto, “Chemical Vapor-Deposition of Diamond in RF Glow-Discharge,” Journal of Materials Science Letters, 4, 600-602, (1985).
[35] J. Wei, H. Kawarada, J. Suzuki and A. Hiraki, “Growth of diamond films at low pressure using magneto-microwave plasma cvd,” Journal of Crystal Growth, 99, 1201-1205, (1990).
[36] A. Sawabe and T. Inuzuka, “Growth of Diamond Thin-Films by Electron Assisted Chemical Vapor-Deposition, "Applied Physics Letters, 46, 146-147, (1985).
[37] K. Suzuki, A. Sawabe, H. Yasuda and T. Inuzuka, “Growth of diamond thin films by dc plasma chemicai vapor deposition,” Applied Physics Letters, 50, 728-729, (1987).
[38] H. Liu and D. S. Dandy, Diamond Chemical Vapor Deposition : Nucleation and Early Growth Stages, Willian Andrew, (1995).
[39] I. N. Gou, “Photoluminescence Characteristics of ZnO Thin Films by Reactive RF Magnetron Sputtering,” National Sun Yat-Sen University, (2004).
[40] J. He, P. H. Cutler and N. M. Miskovsky , “Generalization of Fowler--Nordheim field emission theory for nonplanar metal emitters,” Applied Physics Letters, 59, 1644-1646, (1991).
[41] K. L. Jensen and E. G. Zaidman, “Field emission from an elliptical boss: Exact versus approximate treatments,” Applied Physics Letters, 63, 702-704, (1993).
[42] K. L. Jensen and E. G. Zaidman, “Field emission from an elliptical boss: Exact and approximate forms for area factors and currents,” Journal of Vacuum Science and Technology B, 12, 776-780, (1994).
[43] K. L. Jensen and E. G. Zaidman, “Analytic expressions for emission in sharp field emitter diodes,” Journal of Applied Physics, 77, 3569-3571, (1995).
[44] T. S. Fisher and D. G. Walker, “Thermal and Electrical Energy Transport and Conversion in Nanoscale Electron Field Emission Processes,” Journal of Heat Transfer, 124, 954-962, (2002).
[45] T. S. Fisher, “Influence of nanoscale geometry on the thermodynamics of electron field emission,” Applied Physics Letters, 79, 3699-3701, (2001).
[46] L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, E. Schaller, L. Schlapbach, H. Kind, J. M. Bonard and K. Kern, “Scanning field emission from patterned carbon nanotube films,” Applied Physics Letters, 76, 2071-2073, (2000).
[47] J. S. Suh, K. S. Jeong, J. S. Lee and I. Han, “Study of the field-screening effect of highly ordered carbon nanotube arrays,” Applied Physics Letters, 80, 2392-2394, (2002).
[48] R. C. Smith and S. R. P. Silva, “Maximizing the electron field emission performance of carbon nanotube arrays,” Applied Physics Letters, 94, 133104-1-133104-3, (2009).
[49] M. W. Geis, N. N. Efremow, J. D. Woodhouse, M. D. Mcaleese, M. Marchywka, D. G. Socker and J. F. Hochedez, “Diamond Cold-Cathode,” IEEE Electron Device Letters, 12, 456-459, (1991).
[50] S. Iannazzo, “Review: A Survey of the Present Status of Vacuum Microelectonics,” Solid-State Electronics, 36, 301-320, (1993).
[51] N. Ghosh, W. P. Kang and J. L. Davidson, “Fabrication and implementation of nanodiamond lateral field emission diode for logic OR function,” Diamond and Related materials, 23, 120-124, (2012).
[52] L. S. Pan and D. R. Kania, Diamond: electronic properties and applications: Kluwer Academic Publishers, (1995).
[53] H. F. Cheng, H. Y. Chiang, C. C. Homg, H. C. Chen, C. S. Wang and I. N. Lin, “Enhanced electron field emission properties by tuning the microstructure of ultrananocrystalline diamond film,” Journal of Applied Physics, 109, 033711-1-033711-8, (2011).