研究生: |
蔡佳軒 Tsai, Jia-Siuan |
---|---|
論文名稱: |
Switching Bilateral Filtering with a Texture/Noise Detector for Universal Noise Removal 結合紋理與雜訊偵測切換式雙邊濾波器之通用雜訊消除演算法 |
指導教授: |
邱瀞德
Chiu, Ching-Te |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊工程學系 Computer Science |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 38 |
中文關鍵詞: | 雙邊濾波器 、影像復原 、高斯雜訊 、脈衝雜訊 、混合式雜訊 、非線性濾波器 |
外文關鍵詞: | switch bilateral filter, image restoration, Gaussian noise, impulse noise, mixed noise, nonlinear filters |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在這篇論文中,我們提出了一個嶄新的切換式雙邊濾波器,並且結合紋理與雜訊偵測能去除混合式的雜訊模型。基本上的概念是先偵測然後如果有雜訊便進行濾波,若沒有判斷沒有雜訊便不進行濾波處理。我們提出象限中間值排序向量(SQMV)架構的方法,它能提供許多重要的訊息,像是在目前處理的位置中是否存在任何影像邊緣或是細節的資訊。並且可以從這些資訊裡再從SQMV中確定出一個參考中間值來代表目前影像位置的特性。在雜訊偵測器中,參考中間值用來跟目前的像素比較,並且判定目前的像素點是一個脈衝雜訊、高斯雜訊或是一個沒有雜訊的點。切換式雙邊濾波器確實能夠有效去除高斯與脈衝這兩種雜訊模型。依照目前判斷出的雜訊模型,來切換雙邊濾波器中差值濾波器的部份。模擬結果顯示我們設計的雜訊偵測器對於這兩種雜訊模型不只有很高的雜訊偵測率,也有很高的雜訊分辨率。切換式雙邊濾波器能夠達到很高的峰值信噪比與極佳的影像結果,與其他大部分濾波器不同的是,我們設計的切換式雙邊濾波器,不僅能夠去除單一雜訊模型,也能夠很有效地處理混合性的雜訊模型,其一是胡椒鹽雜訊混合均勻脈衝雜訊,另一個是胡椒鹽雜訊混合高斯雜訊。
[1] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color images,” in Proc. IEEE Int. Conf. Computer Vision, pp. 839–846, 1998.
[2] H. Lin and A. N.Willson Jr., “Median filters with adaptive length,” IEEE Trans. Circuits Syst., vol. 35, no. 6, pp. 675–690, Jun. 1988
[3] S. Ko and Y. Lee, “Center weighted median filters and their applications to image enhancement,” IEEE Trans. Circuits Syst., vol. 38, no.9, pp. 984–993, Sep. 1991.
[4] A. C. Bovik, T. S. Huang, and D. C. Munson, “A generalization of median filtering using linear combinations of order statistics,” IEEE Trans. Acoust., Speech, Signal Process., vol. ASSP-31, no. 6, pp. 1342–1350, Dec. 1983.
[5] R. C. Hardie and K. E. Barner, “Rank conditioned rank selection filters for signal restoration,” IEEE Trans. Image Process., vol. 3, no. 3, pp. 192–206, Mar. 1994.
[6] G. Pok, J. Liu, and A. S. Nair, “Selective removal of impulse noise based on homogeneity level information,” IEEE Trans. Image Process., vol.12, no. 1, pp. 85–92, Jan. 2003.
[7] N. I. Petrovic and V. Crnojevic, “Universal impulse noise filter based on genetic programming,” IEEE Trans. Image Process., vol.17, no. 7, pp. 1109–1120, Jul. 2008.
[8] E. Abreu, M. Lightstone, S. K. Mitra, and K. Arakawa, “A new efficient approach for the removal of impulse noise from highly corrupted images,” IEEE Trans. Image Process., vol. 5, no. 6, pp. 1012–1025, Jun. 1996.
[9] T. Chen and H. R. Wu, “Adaptive impulse detection using center-weighted median filters,” IEEE Signal Process. Lett., vol.8, no. 1, pp. 1–3, Jan. 2001.
[10] Y. Dong and S. Xu, “A new directional weighted median filter for removal of random-valued impulse noise,” IEEE Signal Process. Lett., vol. 14, no. 3, pp. 193–196, Mar. 2007.
[11] S. Schulte, M. Nachtegael, V. D. Witte, D. V. d. Weken, and E. E.Kerre, “A fuzzy impulse noise detection and reduction method,” IEEE Trans. Image Process., vol. 15, no. 5, pp. 1153–1162, May 2006.
[12] R. Garnett, T. Huegerich, C. K. Chui, and W. He, “A universal noise removal algorithm with an impulse detector,” IEEE Trans. Image Process., vol. 14, no. 11, pp. 1747–1754, Nov. 2005.
[13] Ming Zhang and Bahadir K. Gunturk,``Multiresolution Bilateral Filtering for Imgage Denoiseing," IEEE Trans. Image Process., vol. 17, no. 12, pp. 2324-2333, Dec. 2008.
[14] T. Chen, K.-K. Ma, and L.-H. Chen,``Tri-state median filter for image denoising," IEEE Trans. Image Process., vol. 8, no. 12, pp. 1834-1838, Dec. 1999.
[15] S. Peng and L. Lucke,``Multi-level adaptive fuzzy filter for mixed noise removal," Proc. IEEE Int. Symp. Circuits Systems, vol. 28, Seattle, WA, pp. 1524-1527, Apr. 1995.
[16] H. Lin and A. N.Willson Jr.,``Median filters with adaptive length," Trans. Circuits Syst. , vol. 35, no. 6, pp. 675-690, Jun. 1988.
[17] T. Sun and Y. Neuvo,``Detail-preserving median based filters in image processing," Pattern Recognit. Lett., vol. 15, pp. 341-347, Apr. 1994.
[18] Z. Wang and D. Zhang,``Progressive switching median filter for the removal of impulse noise from highly corrupted images," IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., vol. 46, no. 1, pp. 78-80, Jan. 1999.
[19] G. Pok, J. C. Liu, and A. S. Nair,``Selective removal of impulse noise based on homogeneity level information," IEEE Trans. Image Process., vol. 12, no. 1, pp. 85-92, Jan. 2003.
[20] P.-E. Ng and K.-K. Ma,``A switching median filter with boundary discriminative noise detection for extremely corrupted images," IEEE Trans. Image Process., vol. 15, no. 6, pp. 1506-1516, Jun. 2006.
[21] K. S. Srinivasan and D. Ebenezer,``A new fast and ef?cient decision-based algorithm for removal of high-density impulse noises," IEEE Signal Process. Lett., vol. 14, no. 3, pp. 189-192, Mar. 2007.
[22] V. Crnojevic,``Impulse noise filter with adaptive MAD-based threshold," in Proc. Int. Conf. Image Processing, pp. III:337–340., Mar. 2005.
[23] R. H. Chan, C.-W. Ho, and M. Nikolova,``Salt-and-pepper noise removal by median-type noise detectors and detail preserving regularization," IEEE Trans. Image Process., vol. 14, no. 10, pp. 1479–1485, Oct. 2005.
[24] H. Hwang and R. A. Haddad,``Adaptive median filters: new algorithms and results," IEEE Trans. Image Process., vol. 4, no. 4, pp. 499–502, Apr. 1995.
[25] H. Xu, G. Zhu, H. Peng, and D.Wang,``Adaptive fuzzy switching filter for images corrupted by impulse noise," Pattern Recognit. Lett., vol. 25, pp. 1657–1663, 2004.
[26] N. Alajlan, M. Kamel, and E. Jernigan,``Detail preserving impulsive noise removal," Signal Process.: Image Commun., vol. 19, pp. 993–1003, 2004.
[27] P. S. Windyga,``Fast impulsive noise removal," IEEE Trans. Image Process., vol. 10, no. 1, pp. 173–179, Jan. 2001.
[28] D. Van De Ville, M. Nachtegael, D. Van der Weken, E. E. Kerre, W. Philips, and I. Lemahieu,``Noise reduction by fuzzy image filtering," IEEE Trans. Fuzzy Syst., vol. 11, no. 4, pp. 429–436, Aug. 2003.
[29] T. Chen and H. R. Wu,``Space variant median filters for the restoration of impulse noise corrupted images," IEEE Transactions on Circuits and Systems II, vol. 48, pp. 784–789, 2001.