研究生: |
蔡松佑 Tsai, Sung-Yu |
---|---|
論文名稱: |
學習式時間分配方法應用於工業化農業之無線電力驅動通訊網路 Learning Based Time Allocation for Wireless Powered Communication Network in Industrial Agriculture |
指導教授: |
邱偉育
Chiu, Wei-Yu |
口試委員: |
劉宏煥
Liu, Hung-Huan 古孟霖 Ku, Meng-Lin 陸敬互 Lu, Ching-Hu |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 英文 |
論文頁數: | 43 |
中文關鍵詞: | 能量收集 、工業化農業 、學習式時間分配 、精準農業 、無線電力驅動通訊 網路 、無線能量傳輸 |
外文關鍵詞: | Energy harvest, industrial agriculture, learning based time allocation, precision agriculture, wireless powered communication network, wireless power transfer |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
無線電力驅動通訊網路可以使用混合存取點和傳感器節點執行無線功率傳輸
與無線資訊傳輸。但是,尚未對無線電力驅動網路應用於精準農業的一些問題進
行深入研究: 對網路中通道信息的瞭解不完善,存在通道不確定性的情況下電池供
電型的傳感器節點的吞吐量公平性以及電池壽命的延長。為了解決上述問題,本
研究開發了一種基於學習的用於無線功率傳輸和無線資料傳輸的時隙分配演算法。
所提出的方法學習吞吐量與時隙分配之間的關係,而無需任何有關通道的相關資
訊。然後在學習過程中調整時間分配,解決受傳感器節點最低吞吐量限制的優化
問題,並最大化網路吞吐量和電池壽命。數值分析表明,在存在通道不確定性的
情況下,所提出的方法可以產生比現有方法梗高的網路吞吐量,並可以確保吞吐
量公平性,同時延長電池壽命。
Wireless powered communication networks (WPCNs) can perform wireless power
transfer and energy harvest using a hybrid access point and sensor nodes. However, some
problems arising from the applications of WPCNs to precision agriculture have not been
well investigated: imperfect knowledge on channel information in the network, fairness
throughput of batterypowered
sensor nodes in the presence of channel uncertainty, and
battery lifetime extension. To solve the aforementioned problems, this study develops a
learning based algorithm for allocating time slots for wireless power transfer and energy
harvest. The proposed approach learns the relationship between throughput and time allocations
without any knowledge on channel information. Time allocations are then adjusted
during the learning course in order to maximize an optimization problem constrained by
lowest throughput of sensor nodes and maximizing the network throughput and battery
lifetime. Numerical analysis reveals that the proposed approach can yield higher network
throughput than existing ones in the presence of channel uncertainty and ensure the
throughput fairness while extending battery lifetime.
[1] O. Elijah, T. A. Rahman, I. Orikumhi, C. Y. Leow, and M. N. Hindia, “An overview of
Internet of Things (IoT) and data analytics in agriculture: Benefits and challenges,” IEEE
Internet Things J., vol. 5, no. 5, pp. 3758–3773, Oct 2018.
[2] M. S. Farooq, S. Riaz, A. Abid, K. Abid, and M. A. Naeem, “A survey on the role of IoT
in agriculture for the implementation of smart farming,” IEEE Access, vol. 7, pp. 156 237–
156 271, 2019.
[3] M. Ayaz, M. AmmadUddin,
Z. Sharif, A. Mansour, and E. M. Aggoune, “Internetofthings
(iot)based
smart agriculture: Toward making the fields talk,” IEEE Access, vol. 7, pp.
129 551–129 583, Aug. 2019.
[4] F. Yandun Narvaez, G. Reina, M. TorresTorriti,
G. Kantor, and F. A. Cheein, “A survey of
ranging and imaging techniques for precision agriculture phenotyping,” IEEE/ASME Trans.
Mechatronics, vol. 22, no. 6, pp. 2428–2439, Dec. 2017.
[5] S. N. Daskalakis, G. Goussetis, S. D. Assimonis, M. M. Tentzeris, and A. Georgiadis, “A uw
backscattermorseleaf
sensor for lowpower
agricultural wireless sensor networks,” IEEE
Sensors J., vol. 18, no. 19, pp. 7889–7898, Oct 2018.
[6] Z. Hu, L. Xu, L. Cao, S. Liu, Z. Luo, J. Wang, X. Li, and L. Wang, “Application of nonorthogonal
multiple access in wireless sensor networks for smart agriculture,” IEEE Access,
vol. 7, pp. 87 582–87 592, 2019.
[7] C. T. Kone, A. Hafid, and M. Boushaba, “Performance management of IEEE 802.15.4 wireless
sensor network for precision agriculture,” IEEE Sensors J., vol. 15, no. 10, pp. 5734–
5747, Oct. 2015.
[8] E. Sisinni, A. Saifullah, S. Han, U. Jennehag, and M. Gidlund, “Industrial Internet of Things:
Challenges, opportunities, and directions,” IEEE Trans. Ind. Informat., vol. 14, no. 11, pp.
4724–4734, Nov. 2018.
[9] M. Xu, Q. Yang, and K. S. Kwak, “Distributed topology control with lifetime extension based
on noncooperative
game for wireless sensor networks,” IEEE Sensors J., vol. 16, no. 9, pp.
3332–3342, May 2016.
[10] T. Ojha, S. Misra, and N. S. Raghuwanshi, “Wireless sensor networks for agriculture: The
stateoftheart
in practice and future challenges,” Computers and Electronics in Agriculture,
vol. 118, pp. 66 – 84, Oct. 2015.
[11] W. Xu, W. Liang, X. Jia, Z. Xu, Z. Li, and Y. Liu, “Maximizing sensor lifetime with the
minimal service cost of a mobile charger in wireless sensor networks,” IEEE Trans. Mobile
Comput., vol. 17, no. 11, pp. 2564–2577, Nov. 2018.
[12] I. Jawhar, N. Mohamed, J. AlJaroodi,
and S. Zhang, “An architecture for using autonomous
underwater vehicles in wireless sensor networks for underwater pipeline monitoring,” IEEE
Trans. Ind. Informat., vol. 15, no. 3, pp. 1329–1340, Mar. 2019.
39
[13] J. Dai and D. C. Ludois, “A survey of wireless power transfer and a critical comparison of
inductive and capacitive coupling for small gap applications,” IEEE Trans. Power Electron.,
vol. 30, no. 11, pp. 6017–6029, Nov. 2015.
[14] Y. Alsaba, S. K. A. Rahim, and C. Y. Leow, “Beamforming in wireless energy harvesting
communications systems: A survey,” IEEE Commun. Surveys Tuts., vol. 20, no. 2, pp. 1329–
1360, Jan. 2018.
[15] S. Zheng, W. Liu, and Y. Pan, “Design of an ultrawideband
highefficiency
rectifier for wireless
power transmission and harvesting applications,” IEEE Trans. Ind. Informat., vol. 15,
no. 6, pp. 3334–3342, 2019.
[16] X. Zhang, X. Zhang, and L. Han, “An energy efficient internet of things network using restart
artificial bee colony and wireless power transfer,” IEEE Access, vol. 7, pp. 12 686–12 695,
Jan. 2019.
[17] X. Lu, P. Wang, D. Niyato, D. I. Kim, and Z. Han, “Wireless networks with RF energy
harvesting: A contemporary survey,” IEEE Commun. Surveys Tuts., vol. 17, no. 2, pp. 757–
789, Nov. 2015.
[18] T. D. Ponnimbaduge Perera, D. N. K. Jayakody, S. K. Sharma, S. Chatzinotas, and J. Li,
“Simultaneous wireless information and power transfer (swipt): Recent advances and future
challenges,” IEEE Commun. Surveys Tuts., vol. 20, no. 1, pp. 264–302, Dec. 2018.
[19] H. Ju and R. Zhang, “Throughput maximization in wireless powered communication networks,”
IEEE Trans. Wireless Commun., vol. 13, no. 1, pp. 418–428, Jan. 2014.
[20] J. C. Kwan and A. O. Fapojuwo, “Sumthroughput
maximization in wireless sensor networks
with radio frequency energy harvesting and backscatter communication,” IEEE Sensors J.,
vol. 18, no. 17, pp. 7325–7339, Sep. 2018.
[21] X. Kang, C. K. Ho, and S. Sun, “Optimal time allocation for dynamictdmabased
wireless
powered communication networks,” in Proc. Int. Conf. Commun, Austin, TX, USA, Dec.
2014, pp. 3157–3161.
[22] Y. L. Che, L. Duan, and R. Zhang, “Spatial throughput maximization of wireless powered
communication networks,” IEEE J. Sel. Areas Commun., vol. 33, no. 8, pp. 1534–1548, Aug.
2015.
[23] H. Ju and R. Zhang, “Optimal resource allocation in fullduplex
wirelesspowered
communication
network,” IEEE Trans. Commun., vol. 62, no. 10, pp. 3528–3540, Oct. 2014.
[24] R. Wang and D. R. Brown, “Throughput maximization in wireless powered communication
networks with energy saving,” in Proc. Int. Conf. Signals, Syst and Comput, Pacific Grove,
CA, USA, Nov. 2014, pp. 516–520.
[25] X. Chen, X. Wang, and X. Chen, “Energyefficient
optimization for wireless information and
power transfer in largescale
mimo systems employing energy beamforming,” IEEE Wireless
Commun. Lett., vol. 2, no. 6, pp. 667–670, Dec. 2013.
40
[26] B. Kim, J. Kang, H. Kim, and J. Lee, “Maxmin
energyefficiency
optimization in wireless
powered communication network with harvestthentransmit
protocol,” in Proc. Int. Conf. IT
Convergence and Security, Prague, Czech Republic, Sep. 2016, pp. 1–5.
[27] T. Ha, J. Kim, and J. Chung, “HEMAC:
Harvestthentransmit
based modified EDCF MAC
protocol for wireless powered sensor networks,” IEEE Trans. Wireless Commun., vol. 17,
no. 1, pp. 3–16, Jan. 2018.
[28] D. Li, W. Peng, and Y. Liang, “Hybrid ambient backscatter communication systems with
harvestthentransmit
protocols,” IEEE Access, vol. 6, pp. 45 288–45 298, Aug. 2018.
[29] B. Lyu, H. Guo, Z. Yang, and G. Gui, “Throughput maximization for hybrid backscatter
assisted cognitive wireless powered radio networks,” IEEE Internet Things J., vol. 5, no. 3,
pp. 2015–2024, 2018.
[30] S. Guo, F. Wang, Y. Yang, and B. Xiao, “Energyefficient
cooperative tfor simultaneous
wireless information and power transfer in clustered wireless sensor networks,” IEEE Trans.
Commun., vol. 63, no. 11, pp. 4405–4417, Nov. 2015.
[31] D. W. K. Ng, E. S. Lo, and R. Schober, “Wireless information and power transfer: Energy
efficiency optimization in ofdma systems,” IEEE Trans. Wireless Commun., vol. 12, no. 12,
pp. 6352–6370, Dec. 2013.
[32] G. Yang, C. K. Ho, R. Zhang, and Y. L. Guan, “Throughput optimization for massive mimo
systems powered by wireless energy transfer,” IEEE J. Sel. Areas Commun., vol. 33, no. 8,
pp. 1640–1650, Aug. 2015.
[33] A. Biason and M. Zorzi, “Batterypowered
devices in WPCNs,” IEEE Trans. Commun.,
vol. 65, no. 1, pp. 216–229, Jan. 2017.
[34] L. Ji and S. Guo, “Energyefficient
cooperative resource allocation in wireless powered mobile
edge computing,” IEEE Internet Things J., vol. 6, no. 3, pp. 4744–4754, Jun. 2019.
[35] O. Kaiwartya, A. H. Abdullah, Y. Cao, R. S. Raw, S. Kumar, D. K. Lobiyal, I. F. Isnin,
X. Liu, and R. R. Shah, “TMQM:
Testbedbased
multimetric
quality measurement of sensor
deployment for precision agriculture—a case study,” IEEE Sensors J., vol. 16, no. 23, pp.
8649–8664, Dec. 2016.
[36] M. AboZahhad,
S. M. Ahmed, N. Sabor, and S. Sasaki, “Mobile sinkbased
adaptive immune
energyefficient
clustering protocol for improving the lifetime and stability period of wireless
sensor networks,” IEEE Sensors J., vol. 15, no. 8, pp. 4576–4586, Aug. 2015.
[37] C. U. Kumari, “Investigation: Lifetime
and stability period in wireless sensor network,” in
Proc. Int. Conf. Convergence in Technology, Pune, India, Apr. 2018, pp. 1–5.
[38] X. Liu, “An optimaldistancebased
transmission strategy for lifetime maximization of wireless
sensor networks,” IEEE Sensors J., vol. 15, no. 6, pp. 3484–3491, Jun. 2015.
41
[39] O. Cayirpunar, B. Tavli, E. KadiogluUrtis,
and S. Uludag, “Optimal mobility patterns of
multiple base stations for wireless sensor network lifetime maximization,” IEEE Sensors J.,
vol. 17, no. 21, pp. 7177–7188, Nov. 2017.
[40] H. Yetgin, K. T. K. Cheung, M. ElHajjar,
and L. Hanzo, “Networklifetime
maximization of
wireless sensor networks,” IEEE Access, vol. 3, pp. 2191–2226, Nov. 2015.
[41] H. Yetgin, K. T. K. Cheung, M. ElHajjar,
and L. H. Hanzo, “A survey of network lifetime
maximization techniques in wireless sensor networks,” IEEE Commun. Surveys Tuts., vol. 19,
no. 2, pp. 828–854, Secondquarter 2017.
[42] P. Blasco, D. Gunduz, and M. Dohler, “A learning theoretic approach to energy harvesting
communication system optimization,” IEEE Trans. Wireless Commun., vol. 12, no. 4, pp.
1872–1882, Apr. 2013.
[43] K. K. Nguyen, T. Q. Duong, N. A. Vien, N. LeKhac,
and M. Nguyen, “Noncooperative
energy efficient power allocation game in d2d communication: A multiagent
deep reinforcement
learning approach,” IEEE Access, vol. 7, pp. 100 480–100 490, 2019.
[44] K. K. Nguyen, T. Q. Duong, N. A. Vien, N. LeKhac,
and L. D. Nguyen, “Distributed deep deterministic
policy gradient for power allocation control in d2dbased
v2v communications,”
IEEE Access, vol. 7, pp. 164 533–164 543, Nov. 2019.
[45] P. Shen, M. Ouyang, L. Lu, J. Li, and X. Feng, “The coestimation
of state of charge, state of
health, and state of function for lithiumion
batteries in electric vehicles,” IEEE Trans. Veh.
Technol., vol. 67, no. 1, pp. 92–103, Jan. 2018.
[46] R. Parr, L. Li, G. Taylor, C. PainterWakefield,
and M. L. Littman, “An analysis of linear
models, linear valuefunction
approximation, and feature selection for reinforcement learning,”
in Proc. Int. Conf. Mach learn,New York, USA, 2008.
[47] G. Konidaris, S. Osentoski, and P. Thomas, “Value function approximation in reinforcement
learning using the fourier basis,” in Proc. Int. Conf. Artificial Intelligence, San Francisco,
California, USA, Aug. 2011, pp. 1–5.
[48] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, 2nd ed. Cambridge,
Massachusetts, London, England: MIT Press, 2018.
[49] A. A. Sherstov and P. Stone, “Function approximation via tile coding: Automating parameter
choice,” in Abstraction, Reformulation and Approximation, J.D.
Zucker and L. Saitta, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 194–205.
[50] S. Whiteson, M. E. Taylor, and P. Stone, “Adaptive tile coding for value function approximation,”
University of Texas at Austin, Tech. Rep. AITR07339,
2007.
[51] C.Wu and W.Meleis, “Function approximation using tile and kanerva coding for multiagent
systems,” in Proc. Int. Conf. Autonomous Agents and Multiagent Syst, May 2009, pp. 1–4.
42
[52] B. Ren, Z. Qin, and F. F. Zhao, “Optional feature vector generation for linear value function
approximation with binary features,” in Information Technology Applications in Industry,
Computer Engineering and Materials Science, ser. Advanced Materials Research, vol. 756.
Trans Tech Publications Ltd, Oct. 2013, pp. 3967–3971.
[53] W. Chen, Y. Lin, Y. Lin, R. Chen, J. Liao, F. Ng, Y. Chan, Y. Liu, C. Wang, C. Chiu,
and T. Yen, “Agritalk: Iot for precision soil farming of turmeric cultivation,” IEEE Internet
Things J., vol. 6, no. 3, pp. 5209–5223, 2019.
[54] L. Xu, G. Yu, and Y. Jiang, “Energyefficient
resource allocation in singlecell
ofdma systems:
Multiobjective
approach,” IEEE Trans. Wireless Commun., vol. 14, no. 10, pp. 5848–
5858, 2015.
[55] G. Jones, “Genetic and evolutionary algorithms,” Encyclopedia of Computational Chemistry,
vol. 2, pp. 1127–1136, 1998.
[56] W. Rukpakavong, L. Guan, and I. Phillips, “Dynamic node lifetime estimation for wireless
sensor networks,” IEEE Sensors J., vol. 14, no. 5, pp. 1370–1379, May 2014.