簡易檢索 / 詳目顯示

研究生: 許紘瑋
Hsu, Hung-Wei
論文名稱: 全溶液製程的多層圖樣化共軛高分子發光二極體
The patterning method for solution-processed polymer light-emitting diodes
指導教授: 洪勝富
Horng, Sheng-Fu
孟心飛
Meng, Hsin-Fei
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 85
中文關鍵詞: 共軛高分子發光二極體多層結構刮刀塗布圖樣化PDMS
外文關鍵詞: PLED, multilayer structure, blade coating method, pattern, PDMS
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用共軛高分子發光二極體作圖樣化設計是一個十分新穎的概念,目前並沒有相關的研究成果或產品問世。要利用低成本的溶液製程來製作圖樣化發光二極體可說是十分困難,而將其推展到多層結構更是一大難題,在此我提出一個發展多層圖樣化共軛高分子發光二極體的製程方法:利用刮刀塗布技術搭配遮罩,但遮罩會產生溶液側漏的問題,因此我選定polydimethylsiloxane(PDMS)來製作遮罩(mask),由於PDMS具有良好的彈性與密合性,並不會傷害有機發光薄膜,十分適合用來作為遮罩。我們發展的多層圖樣化共軛高分子發光二極體,在同一種背景光色中(如藍色)可以發出其他不同顏色的色光(如黃光) ,利用了刮刀技術搭配PDMS mask,我們可輕易定義發光區域以及發光顏色。此一方法具備了低成本、製程步驟簡單、光色均勻、亮度高……等優點。
    圖樣化元件與標準片的亮度和效率十分接近,效率分別為1.78 cd/A和1.56 cd/A,亮度分別為4133 cd/m2和3893 cd/m2,證明了PDMS mask確實不會對有機薄膜造成影響。


    Multilayer structure polymer light-emitting diodes (PLEDs) with a patterned second emission layer are presented. We utilize polydimethylsiloxane (PDMS) mask combined with blade coating method to fabricate multilayer patterned PLEDs by solution process. Multilayer structure and patterned emission layer are achieved by blade coating and a PDMS mask, respectively.
    Owing to the elasticity and good adhesion of PDMS mask, it can stick on the first emission layer very tightly without any damage on the emission layer. The second emission layer is then blade coated with a designed pattern by the PDMS layer; therefore, the solution can be enclosed by the patterned PDMS layer to form a uniform organic layer. We can easily define the emission region and colors with such method, which leads to dual-color, uniform and patterned PLEDs.
    The current efficiency of patterned and standard device are 1.78 cd/A and 1.56 cd/A, and the luminance of patterned and standard device are 4133 cd/m2 and 3893 cd/m2. Therefore, device performance of patterned PLEDs is comparable to that of a standard one. PDMS mask certainly does no significant damage on the organic layer.

    中文摘要 英文摘要 致謝 目錄 表目錄 圖目錄 Chapter 1 緒論 1-1 有機發光二極體發展歷程 1-2 研究動機 1-3 論文架構 Chapter 2 共軛高分子發光二極體理論知識 2-1 共軛高分子發光二極體工作原理 2-2 共軛高分子材料介紹 2-3螢光單重態與磷光三重態理論 2-4 能量轉移機制介紹 2-4-1 輻射能量轉移 2-4-2 非輻射能量轉移 2-5 有機材料與金屬接面 2-5-1 蕭特基接面(Schottky contact) 2-5-2 歐姆接面(Ohmic contact) 2-6 有機材料載子傳輸理論 Chapter 3 共軛高分子發光二極體實驗介紹 3-1 共軛高分子發光二極體實驗流程介紹 3-1-1 透明導電陽極(ITO)蝕刻 3-1-2 元件製作清洗與臭氧表面處理 3-1-3 電洞傳輸層PEDOT:PSS成膜方法 3-1-4 元件主動區成膜 3-1-5 陰極蒸鍍與封裝 3-2 元件量測系統 3-3 有機材料介紹 3-3-1 電洞傳輸材料 3-3-2 電子傳輸材料 3-3-3 發光材料 Chapter 4 大面積均勻多層結構的共軛高分子發光二極體研究 4-1 多層結構共軛高分子發光二極體 4-1-1 刮刀塗布法(Blade coating method) 4-2 大面積均勻多層結構的共軛高分子發光二極體研究 4-2-1 大面積均勻多層元件製作 4-2-2 大面積均勻多層共軛高分子二極體研究成果 Chapter 5 多層圖樣化共軛高分子發光二極體研究 5-1 多層圖樣化有機發光二極體簡介 5-2 聚二甲基矽氧烷(PDMS)遮罩 5-3 多層圖樣化共軛發光二極體製作 5-3-1 刮刀塗布技術搭配PDMS遮罩 5-4 刮刀搭配PDMS遮罩製作圖樣化發光二極體成果 5-4-1 PFO/SY系統 5-4-2 CB01/SY系統 5-4-3 Ir(mppy)3/ Ir(piq)2系統 5-5 主動層元件效率測試 5-5-1聚二甲基矽氧烷(PDMS)遮罩對PFO的影響 5-5-2高效率藍光CB01元件表現研究 Chapter 6 結論 參考文獻

    [1] C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett. 51, 913 (1987)
    [2] J. H. Brroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, Nature 347, 539 (1990)
    [3] http://nobelprize.org/nobel_prizes/chemistry/laureates/2000/adv.html
    [4] http://www.phy.ntnu.edu.tw/~changmc/Article/polymer.htm
    [5] http://ykuo.ncue.edu.tw/lecture.htm
    [6]陳金鑫,黃孝文“OLED-夢幻顯示器”
    [7] S.Karg,M.Meier,and W.Riess, J.App.Phys.82,1951. (1997)
    [8] M. K. Fung, S. W. Tong, S. L. Lai, S. N. Bao, C. S. Lee, W. W. Wu, M. Inbasekaran, J. J. O’Brien, S. Y. Liu and S. T. Lee, J. Appl. Phys. Lett. 94, 15 (2003)
    [9] Z. Y. Xie, Y. Q. Li, T. C. Wong, F. L. Wong, M. K. Fung, S. T. Lee and L. S. Hung, Mat. Res. Soc. 725 (2002)
    [10] American Dye Source website.
    [11] G. K. Ho, H. F. Meng, S. C. Lin, S. F. Horng, C. S. Hsu, L. C. Chen, S. M. Chang, Appl. Phys. Lett. 8, 4576 (2004)
    [12] Z. Liang and O. M. Cabarcos, Adv. Mater. 16, 823 (2004)
    [13] W. Ma, P. K. Iyer, X. Gong, B. Liu, D. Moses, G. C. Bazan, and A. J. Heeger, Adv. Mater. 17, 274 (2005)
    [14] J. S. Kim, R. H. Friend, I. Grizzi and J. H. Burroughes Appl. Phys. Lett. 87, 023506 (2005)
    [15] T. W. Lee, M. G. Kim, S. Y. Kim, S. H. Park, O. Kwon, T. Noh, and T. S. Oh, Appl. Phys. Lett. 89, 123505 (2006)
    [16] Dong-Kyu Park, A-Rum Chun, Soo-Hong Kim, Min-Sook Kim, Choong-Gi Kim, Tae-Woo Kwon, Seong-Jin Cho, Hyung-Suk Woo, Jae-Gyoung Lee, Suck-Hyun Lee and Zhi-Xin Guo, Appl. Phys. Lett. 91, 052904 (2007)
    [17] Lichun Chen, Patrick Degenaar, and Donal D. C. Bradley, Adv. Mater. 20, 1679-1683 (2008)
    [18] S. R. Tseng, S. C. Lin, H. F. Meng, H. H. Liao, C. H. Ye, H. C. Lai, S. F. Horng and C. S. Hsu, Appl. Phys. Lett. 88, 163501 (2006)
    [19] S. R. Tseng, H. F. Meng, K. C. Lee and S. F. Horng, Appl. Phys. Lett. 93, 15508 (2008)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE