研究生: |
劉得宇 Liu, Te-Yu |
---|---|
論文名稱: |
利用奈米金陣列增強拉曼訊號應用於單一病毒檢測 Array of nano-gold using surface enhancement Raman scattering applied to single virus detection |
指導教授: |
曾繁根
Tseng, Fan-Gang |
口試委員: |
魏培坤
Wei, Pei-Kuen 徐文祥 Su, Wen-Syang 張晃猷 Chang, Hwan-You 王本誠 Wang, Pen-Cheng |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 88 |
中文關鍵詞: | 微系統 、光學免疫感測晶片 、奈米金陣列 、螢光訊號 、拉曼訊號 |
外文關鍵詞: | MEMS, Optical immune sensor chip, Nano Au array, Fluorescence signal, Raman signal |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究針對奈米光學免疫感測晶片的研究,可應用於醫學、生化相關的檢測,利用特殊的奈米結構,可以讓訊號增強,達到快速篩檢的功用。本研究內容包含奈微米金陣列結構製作技術、化學合成粒子表面結構技術、表面化學修飾技術以及螢光訊號與拉曼訊號測試技術等。
生物檢測晶片已經研究多年,但是要達到少量的檢體又能快速並且明顯的得到高照訊比的目標一直是這方面研究的課題,近年來有許多人在研究特殊的奈米結構用以增強拉曼訊號,若能夠利用上述之方法,將可以減少檢驗物質並且提高訊號。而前述的奈米光學免疫感測晶片,是利用金屬粒子表面修飾一層自組裝單分子膜,再用單分子膜上面官能基與抗體官能基鍵結,抗體與抗原之間有互相辨認的特性,達到感測的機制。
為了滿足量少又能使訊號增強的需求,本研究設計了一種三維奈米等級的粗糙表面結構,搭配不同參數條件,可有效增加其訊號,由拉曼光譜檢測結果亦可獲得驗證。利用腺病毒當我們檢測的檢體,在結果方面,利用濃度107/μl的病毒溶液,有結構拉曼訊號增加為沒有結構的五倍,因此,透過此技術,不但有效減少檢體的量,並且有助於拉曼訊號之提升。
Abstract
In this study, optical immune sensor chip can be used in medicine, biochemistry related to the detection, the use of special nano-arrays, allowing the signal enhancement, to achieve rapid screening function. This study includes nano-micron manufacturing technology of gold array structure, chemical synthesis of particles, surface chemical modification techniques and fluorescence signals and Raman signal testing technology.
Biological detection chip has been studied for many years, but a small number of samples to achieve can be fast and clear signal that we need research in this area has been subject in recent years, many people in the study of nanostructures for specific enhanced Raman signal, if able to use the above method, can reduce the test material and to increase the signal. The aforementioned nano optical immune sensor chip is a layer of surface modification by metal particles self-assemble monolayer, monolayer and then the above functional groups and the antibody binding functional group, each between antibody and antigen identification features achieve sensing mechanism.
In order to increased the signal and less target in our chip, the study design was a three-dimensional rough surface structure level, with different parameters, which can effectively increase the signal detected by the Raman spectroscopy results can be verified, Therefore, through this technology, not only effectively reduce the amount of samples, and help enhance the Raman signals.
參考文獻
[1] X. Dou, Y. Yamaguchi, H. Yammamoto, S. Doi, Y. Ozaki.”Quantitative analysis of metabolites in urine using a highly precise, compact near-infrared Raman spectrometer” Vibrational spectroscopy. 13 (1996) 83-89
[2] John W. McMurdy III and Andrew J. Berger, “Raman Spectroscopy-Based Creatinine Measurement in Urine Samples from a Multipatient Population”Applied Spectroscopy 57 No. 5 (2003)
[3] Josefa R Baena1 and Bernhard Lendl,” Raman spectroscopy in chemical bioanalysis ” Current Opinion in Chemical Biology 8 (2004) 534–539
[4] Richard L. McCreery, “Raman Spectroscopy for chemical analysis”, New york : Wiley Interscience, (2000)
[5] Katrin Kneipp, Yang Wang, Harald Kneipp, Lev T. Perelman, Irving Itzkan,Ramachandra R. Dasari, and Michael S. Feld,” Raman imaging and sensing apparatus employing nanoantennas ”Physical Review Letters 78 No.9 (1997)
[6] Alan Campion and Patanjali Kambhampati, “Surface-enhanced Raman scattering”, Chemical Society Reviews, 27 (1998), 241-250
[7] Yoshihiro Maruyama, Mitsuru ishikawa, and Masayuki Futamata, “ATR-SNOM Raman Spectroscopy using Surface Plasmon Polariton”Analytical Science 17 Supplement (2001)
[8] Shuming Nie and Steven R. Emory,” Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering” Science 275 (1997)
[9] T. Funatsu, et. al.,” Imaging of single molecules and individual ATP turnovers by single myosin molecules in aqueous solution,” Nature 374, 555−559 (1995).
[10] M. J. Levene, et al.,”Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299, 682−686 (2003).
[11] Y. Rondelez, G. Tresset, K. V. Tabata, H. Arata, H. Fujita, S. Takeuchi and H. Noji, ”Microfabricated arrays of femtoliter chambers allow single molecule enzymology,” Nature Biotechnology 23, 361 - 365 (2005)
[12] H. Craighead, “Future lab-on-a-chip technologies for interrogating individual molecules,” Nature 442, 387-393 (2006)
[13] L. Soleymani, Z. Fang, E.H. Sargent, and S.O. Kelley, “Programming the detection limits of biosensors through controlled nanostructuring.,” Nature nanotechnology, vol. 4, Dec. 2009, pp. 844-8.
[14] X. Bin, E.H. Sargent, and S.O. Kelley, “Letters to Analytical Chemistry Nanostructuring of Sensors Determines the Efficiency of Biomolecular Capture,” Society, vol. 82, 2010, pp. 5928-5931.
[15] J. Xie, Q. Zhang, J.Y. Lee, and D.I.C. Wang, “The synthesis of SERS-active gold nanoflower tags for in vivo applications.,” ACS nano, vol. 2, Dec. 2008, pp. 2473-80.
[16] Chen C. H., H. C. Ding, T. C. Chang, “Rapid identification of Bacillus cereus Based on the Detection of a 28.5-Kilodalton Cell Surface Antigen”, Journal of Food Protection, 64, 348-354(2001).
[17] J. I. Martin, J. Nogues, K. Liu, J. L. Vicent, and I. K. Schuller, "Ordered magnetic nanostructures: fabrication and properties," Journal of Magnetism and Magnetic Materials, vol. 256, pp. 449-501, Jan 2003.
[18] G. M. Whitesides and J. C. Love, "The art of building small - Researchers are discovering cheap, efficient ways to make structures only a few billionths of a meter across," Scientific American, vol. 285, pp. 38-47, Sep 2001.
[19] 鄭瑞庭, 蔡宏營, 林熙翔, 蘇建彰, and 陳建洋, "簡介下世代微影技術與奈米轉印微影技術," 機械工業雜誌, vol. 245 期, pp. 106-116.
[20] K. Bessho, Y. Iwasaki, and S. Hashimoto, "Nanoscale magnetic mounds fabricated using a scanning probe microscope," Ieee Transactions on Magnetics, vol. 32, pp. 4443-4447, Sep 1996.
[21] S. Y. Chou, P. R. Krauss, and P. J. Renstrom, "Nanoimprint lithography," The Journal of Vacuum Science and Technology B vol. 14 pp. 4129-4133, 1996.
[22] G. Zhang, D. Y. Wang, and H. Mohwald, "Ordered binary arrays of Au nanoparticles derived from colloidal lithography," Nano Letters, vol. 7, pp. 127-132, Jan 2007.
[23] M. Alexe, C. Harnagea, and D. Hesse, "Non-conventional micro- and nanopatterning techniques for electroceramics," Journal of Electroceramics, vol. 12, pp. 69-88, Jan-Mar 2004.
[24] Poirier, G. E.; Pylant, E. D. Science 1996, 272,1145-1148.
[25] Moskovits M.”Surface-enhanced spectroscopy”, Reviews of modern physics, 57, 785-826(1985).
[26] Rechberger W., A. Hohenau, A. Leitner, J. R, Krenn, B. Lamprecht, F. R. Aussenegg,” Optical propertices of two interacting gold nanoparticles”, Optics Communications, 220, 137-141(2003)
[27] M. Kuwahara, T. Nakano, C. Mihalcea, T. Shima, J. H. Kim, J. Tominaga, and N. Atoda, “Less than 0.1um linewidth fabrication by visible light using super-resolution near-field structure” Microelectronic Engineering 57-58, 883-890, 2011.
[28] J. –J. Chyou, S. –J. Chen, C-S. Chu, et al., “Multi-experiment linear data analysis for ATR biosensors, “ Proc. SPIE 4089, (Seattle, Washington), July 2002.
[29] C. L. Lei, C. C. Wei, M.C. Chen, S.Y. Ou, W.-H. Li, and K.C. Lee, “Enhance Raman scattering from crystal violet and benzoic acid molecules adsorbed on silver nanocrystals,” Materials Science and Engineering B 32, 39-45, 1995.
[30] P. –T. Leung, D. Pollard-Knight, G.P. Malan, and M.F. Finlan, “Modeling of particle-ehanced sensitivity of the surface –plasmon-resonance biosensor,” Sensors and Actuator B 22, 175-180, 1994.
[31] P.M. Hui and D. stroud, “complex dielectric response of metal-particle clusters,” Physical Review B, 33, 2163-2169, 1986.
[32] K. Kneipp, H. Kneipp, I. Itzkan, R. R Dasari and M. s Feld,”Surface-enhanced Raman scattering and biophysics,” J. Phys.: Condens. Matter 14, R597-R624 (2002).
[33] J.D. Driskell, J.M. Uhlenkamp, R.J. Lipert, and M.D. Porter, “Surface-Enhanced Raman Scattering Immunoassays Using a Rotated Capture Substrate been developed to meet the increasing levels of perfor-,” vol. 79, 2007, pp. 4141-4148.
[34] Y.-C. Tsai, P.-C. Hsu, Y.-W. Lin, and T.-M. Wu, “Electrochemical deposition of silver nanoparticles in multiwalled carbon nanotube-alumina-coated silica for surface-enhanced Raman scattering-active substrates,” Electrochemistry Communications, vol. 11, Mar. 2009, pp. 542-545.
[35] S. Shanmukh, L. Jones, J. Driskell, Y. Zhao, R. Dluhy, and R. a Tripp, “Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate.,” Nano letters, vol. 6, Nov. 2006, pp. 2630-6.