研究生: |
官嘉玲 C. L. Kuan |
---|---|
論文名稱: |
紫外光臭氧處理對氧化銦錫與有機半導體接面電性之影響 The effect of electric property of contact bteween ITO and HIL by UV-ozone treatment |
指導教授: |
黃倉秀
T. S. Huang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2003 |
畢業學年度: | 91 |
語文別: | 中文 |
論文頁數: | 80 |
中文關鍵詞: | 氧化銦錫 、紫外光臭氧 、電洞注入層 、遷移長度量測理論 |
外文關鍵詞: | ITO, UV-ozone, Hole Injection Layer, Transfer Length Method |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要探討氧化銦錫(ITO)導電玻璃經過紫外光臭氧(UV-ozone)照射後,對ITO與不同電洞注入層間接面電性的影響。電洞注入層薄膜為PEDOT CH8000、PEDOT AI4083、PAni及CuPc等四種材料。比較 Glass/ITO/電洞注入層的可見光穿透率;ITO/電洞注入層在大氣中的穩定性;UV-ozone照射時間對總電阻值的影響,以及藉由遷移長度測量法(TLM)分析各種電洞注入層的片電阻值以及其與ITO接面的特徵接面電阻值的變化。
研究結果顯示,在可見光範圍內,平均光穿透率以PEDOT CH8000(88%)最高,依次為PEDOT AI4083(83%)、CuPc(77%)、PAni(41%)。四種電洞注入層在大氣中的穩定性,以ITO/PEDOT AI4083最佳,依序為ITO/CuPc、ITO/PAni,以ITO/PEDOT CH8000的穩定性最差。ITO/電洞注入層的總電阻值會隨著UV-ozone照射時間的增長而降低,和電洞注入層本身在大氣中的穩定性有關。ITO/PEDOT CH8000、ITO/PAni及ITO/CuPc界面並不是良好的歐姆接面,只有ITO/PEDOT AI4083具有歐姆接面特性。電洞注入層薄膜的片電阻值以CuPc (1×109 Ω/sq.)為最大,依序為PEDOT CH8000 (5×108 Ω/sq.)、PEDOT AI4083 (3×106 Ω/sq.)、PAni (2×105 Ω/sq.),片電阻值不隨UV-ozone照射的處理而改變。特徵接面電阻值以ITO/PEDOT CH8000為最大 (1.8×10-1Ω-m2),依次為ITO/CuPc (1.2×10-1Ω-m2)、ITO/PEDOT AI4083 (1.1×10-4Ω-m2),以ITO/PAni (3.1×10-5Ω-m2)的特徵接面電阻值最小。特徵接面電阻值隨UV-ozone照射時間增長而降低,其下降在UV-ozone照射30分鐘後趨於平緩。
參考文獻
1.M. Pope, H. P. Kallmann, and P. Magnante, J. Chem. Phys. 38, 2042 (1963).
2.C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett. 51, 913 (1987).
3.J. H. Burroughes, D. C. Bradley, A. R. Brown, R. N. Marks, P. L. Burns, K. Mackay, R. H. Friend, and A. B. Holmers, Nature. 347, 539 (1990).
4.S. Saito, M. Era, C. Adachi, and T. Tsutsui, Chem. Phys. Lett. 178, 488 (1991).
5.A. J. Heeger, I. D. Parker, and Y. Yang, Synth. Met. 67, 23 (1994).
6.I. D. Parker, J. Appl. Phys. 75, 1656 (1994).
7.B. S. Chiou and J. H. Tsai, Mater. Electron. 10, 491 (1999).
8.H. Kobayashi, Y. Ichida, Y. Nakato, and H. Tsubomura, J. Appl. Phys. 69, 1736 (1991).
9.K. L. Chopra, S. Major, and D. K. Pandya, Thin Solid Films. 102, 1 (1983).
10.X. W. Sun, L. D. Wang, and H. S. Kwok, Thin Solid Films. 360, 75 (2000).
11.N. Taga, H. Odaka, Y. Shigesato, M. Kamei, T. E. Haynes, and I. Yasui, J. Appl. Phys. 80, 978 (1996).
12.J. S. Kim, F. Cacialli, M. Granstrom, R. H. Friend, N. Johansson, W. R. Salaneck, R. Daik, and W. J. Feast, Synth. Met. 101, 111 (1999).
13.K. Furukawa, Y. Terasaka, H. Ueda, and M. Metsumura, Synth. Met. 91, 99 (1997).
14.J. S. Kim, F. Cacialli, A. Cola, G. Gigli, and R. Cingolani, Synth. Met. 111-112, 363 (2000).
15.K. Sugiyama, H. Lshii, K. Seki, and Y. Ouchi, J. Appl. Phys.87, 295 (1999).
16.M. G. Mason, L. S. Hung, C. W. Tang, K. W. Wong, M. Wang, and S. T. Lee, J. Appl. Phys. 86, 1688 (1999).
17.W. Song, S. K. So, D. Wang, Y. Quchi, and L. Cao, Appl. Surf. Sci. 177, 158 (2001).
18.T. A. Beierlein, W. Brutting, H. Riel, E. I. Haskal, P. Müller, and W. Rieβ, Synth. Met. 111-112, 295 (2000).
19.D. Braun and A. J. Heeger, Appl. Phys. Lett. 58, 1982 (1991).
20.R. N. Marks, D. C. Bradley, R. W. Jackson, P. L. Burn, and A. B. Holmes, Synth. Met. 55-57, 4128 (1993).
21.J. C. Scott, J. Kaufman, P. J. Brock, R. Dipietro, J. Salem, and J. A. Goitia, J. Appl. Phys. 79, 2745 (1996).
22.S. A. Carter, M. Anglopoulos, S. Karg, P. J. Brock, and J. C. Scott, Appl. Phys. Lett. 70, 2067 (1997).
23.J. C. Scott, S. A. Carter, S. Karg, and M. Angelopoulos, Synth. Met. 85, 1197 (1997).
24.S. Karg, J. C. Scott, J. R. Salem, and M. Angelopoulos, Synth. Met. 80, 111 (1996).
25.Product Information, Bayer, Trial Product AI4083.
26.Q. Pei, G. Zuccarello, M. Ahlskog, and O. Inganäs, Polymer 35, 1347 (1994).
27.K. Z. Xing, M. Fahlman, X. W. Chen, O. Inganäs, and W. R. Salaneck, Synth. Met. 89, 161 (1997).
28.W. Bantikassegn and O. Inganäs, Thin Solid Films 293, 138 (1997).
29.R. Kiebooms, A. Aleshin, K. Hutchison, F. Wudl, and A. Heeger, Synth. Met. 101, 436 (1999).
30.L. S. Roman, M. Berggren, and O. Inganäs, Appl. Phys. Lett. 75, 3557 (1999).
31.J. C. Carter, I. Grizzi, S. K. Heeks, D. J. Lacey, S. G. Latham, P. G. May, O. R. D. I. Paños, K. Pichler, C. R. Towns, and H. F. Wittmann, Appl. Phys. Lett. 71, 34 (1997).
32.A. Elschner, F. Jonas, S. Kirchmeyer, and K. Wussow, Asia Display 1, 1427 (2000).
33.C. Adachi, S. Tokito, T. Tsutsui, and S. Saito, J. Appl. Phys. 27, 269 (1988).
34.A. G. MacDiarmid and A. J. Epstein, Synth. Met. 65, 103 (1994).
35.G. Gustafsson, Y. Cao, G. M. Treacy, F. Klavetter, N. Colaneri, and A. J. Heeger, Nature. 357, 477 (1992).
36.Y. Cao, G. M. Treacy, P. Smith, and A. J. Heeger, Appl. Phys. Lett. 60, 2711 (1992).
37.Y. Yang and A. J. Heeger, Appl. Phys. Lett. 64, 1245 (1994).
38.M. G. Mason, L. S. Hung, and C. W. Tang, J. Appl. Phys. 86, 1688 (1999).
39.F. Nuesch, M. Carrara, M. Schaer, D. B. Romero, and L. Zuppiroli, Chem. Phys. Lett. 26, 311 (2001).
40.D. K. Schroder, Semiconductor material and device characterization (Wiley, New York), p.147, 1998.
41.S. K. So, W. K. Choi, C. H. Cheng, L. M. Leung, and C. F. Kwong, Appl. Phys. A. 68, 447 (1999).