研究生: |
湯士源 Tong, Shi-Yuan |
---|---|
論文名稱: |
Ni摻雜劑對鐵氧磁體複合材料電磁傳輸及微波吸收性質之影響 Effect of Ni-related additives on electromagnetic transport and microwave absorption of ferrite/polymer functional composites |
指導教授: | 吳振名 |
口試委員: |
林敏聰
林昭吟 衛榮漢 |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 150 |
中文關鍵詞: | 鐵氧磁體 、微波吸收材 、等效導磁率 、等效介電率 、同軸 、飽和磁化量 |
外文關鍵詞: | ferrite, microwave absorber, effective permeability, effective permittivity, coaxial, saturation magnetization |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著電機、電子及通訊等技術日新月異,電子產品朝向輕薄短小及多功能設計趨勢,唯有提高電子元組件之裝配密度及降低成本,方能滿足可攜式產品的使用需求。因此若將許多電子元組件裝配設計於更小的電路面積,電磁干擾(Electromagnetic Interference, EMI)就一直是揮之不去的問題。高頻電磁雜訊會干擾到周圍的電子儀器或裝置運作,造成其功能誤動作或失效,嚴重時甚至會危害到人體的健康。目前在眾多電磁波抑制吸收材中,以具尖晶石相之高頻鐵氧磁體最具發展潛力,其優異的電磁損失及高絕緣電阻將有助於提升中高頻段之吸收效能。本研究旨在探討Ni摻雜劑濃度對NiCuZn或MnZn鐵氧磁體複合材料之晶體結構、表面形貌、磁性及電性、電磁傳輸及微波吸收性質之影響。本研究以固態反應燒結法製備鐵氧磁體材料,並引入高分子環氧樹脂以形成均質鐵氧磁體複合材料。本研究重點在於建立磁阻抗模型並模擬分析該複合材料之等效導磁率,計算結果比目前均質混成理論更能精準地預測等效導磁性質,尤其是在高磁性粉體濃度範圍(F/P ≥0.73)。另外,藉由高頻同軸法量測穿透及反射等雙向散射參數,快速萃取計算複合材料之電磁材料參數並解析微波損失與材料參數之關聯性,再配合微波吸收理論以設計出最佳化的單層/雙層吸收匹配結構及效能分析。
本研究初步調控NiZn鐵氧磁體材料的Zn摻雜濃度,以期能夠得到高飽和磁束性質並有助於元件微型化設計,結果發現當Zn濃度控制為0.5,經過1200℃燒結條件後可製備出高緻密性(5.22 g/cm3)及高飽和磁束(4400 G)。另外亦深入探討CuO摻雜於NiZn鐵氧磁體中之微結構及電磁特性。另外由NiCnZn鐵氧磁體/環氧樹脂複合材料所組成的單層微波結構,其微波吸收性能則於F/P=0.73及厚度8mm時具有較佳的反射損失(-48dB)及吸收頻率(4.6GHz).
另外,若均勻地摻雜奈米級Ni金屬於NiCuZn鐵氧磁體基底中,有助於增加鐵氧磁體顆粒間之磁區耦合能力並提升等效導磁率及微波吸收效能。該複合材料損失機制於低頻(<0.7GHz)以介電損失為主;而高頻則以磁性損失為主。當奈米級Ni金屬摻雜濃度為0.15及厚度為7.2mm時,其最大反射損失值可達-53.9dB且吸收頻率發生於1.46GHz,此吸收性能優於以介電材或導電材為主之微波材結構。再者,雙層微波吸收材設計則依高磁損層/高介電損層/導體層之堆疊次序可具有優異之電磁波吸收效能。
另一複合材料系統則研究摻雜NiO於MnZn鐵氧磁體之電磁性質,因考慮到製造成本及製程參數調控,故採用高溫大氣熱處理方式燒結並探討NiO摻雜濃度對於燒結緻密性、電性、磁性及微波吸收效能之影響。當NiO摻雜濃度依序增加時,該複合材降低矯頑磁力及提高飽和磁化量,呈現軟磁特徵之原因主要來自於反鐵磁相(hematite)消失及內部孔洞銳減所導致。 而另一有趣現象則發現材料表面因過度脫鋅而增加表層擴散速率以形成等軸晶結構成長並解析磁場走向及梯度。此複合材料之反射損失則當NiO濃度為0.24時之微波吸收效能為最佳,故極適合用於設計薄型化且優異吸收性能之電磁波抑制材料。
While various portable electrical equipments are designed to pursue for thinner and multifunctional characterizations, the undesired electromagnetic interferences (EMI) have become the seriously environmental disturbances that affect the functionalities of electric circuit in the nearby electrical equipments. These troubled electromagnetic interferences emitted from the different sources may result in malfunctions of the nearby electrical equipments due to misinterpretations of transferred data and information loss. Among all absorbers, the ferrites with the spinel lattice have the outstanding magnetic properties to attenuate electromagnetic wave energy within a GHz frequency range. The objectives of this investigation aim to discuss the concentration effect of Ni-related additives on the crystallographic structure, surface morphology, magnetic and electrical characterizations, electromagnetic transport and electromagnetic wave absorption for the functional ferrite composites which the NiCuZn and MnZn ferrite granules dispersed in polymer matrix. Ferrite materials are systematically synthesized by a standard double sintering technique and then ferrites are granulated with the insulation polymers. This research demonstrates a special finite-elemental-analysis (FEA) method to simulate precisely the concentration effect of ferrite granules on effective permeability for hybrid ferrite composites. In comparisons with the other empirical mixing rules, the results simulated by this FEA method are more accurate than those calculated by empirical mixing rules, especially at the higher ferrite concentrations (F/P≥0.73). Electromagnetic properties of the ferrite composites in microwave region were characterized by the electrical S-parameters with a bidirectional transmission/reflection method in a coaxial airline method. Additionally, the characterized electromagnetic properties of ferrite composites are utilized to design such a single-layer or multilayer absorber to investigate absorbing performances by a computer aided computation method.
Initially, we optimize the concentration dependence of Zn additives in NiZn ferrites to acquire the excellent saturation magnetic flux density, which the higher flux density is contributive to miniaturize the electrical equipments. The experimental results show that while Zn concentration continuously adds to x=0.5 at 1200℃, the NiZn ferrite achieve the highest magnetic flux density (~4400 G) and the densification structure (~5.22 g/cm3). The effect of CuO concentration on microstructure and electromagnetic properties in NiZn ferrites were also studied. Return losses of heterogeneous composites which the Ni0.1Cu0.4Zn0.6Fe1.9O4 ferrite embedded in epoxy resins are discussed. The results show that the maximal return loss of this heterogeneous composites with 8 mm thickness is estimated as -48 dB at 4.6 GHz for F/P ratio = 0.55 using the equation for a single-layer absorber with a back conductor.
In additions, the electromagnetic wave absorptions of Ni0.1Cu0.4Zn0.6Fe1.9O4 ferrite are improved greatly by the additions of the nano-sized Ni fillers into the ferrite matrix. The nanosized Ni fillers play a significant role to enhance magnetic exchange interaction between the ferrite granules to increase effective permeability and microwave absorption of hybrid composites. Absorbing loss mechanism (<0.7GHz) of Ni-filled NiCuZn ferrite composites is predominated by the dielectric loss while the magnetic loss occurs at higher frequency. While the Ni concentration adds to 0.15, the single-layer absorber with 7.2mm thickness exhibit that the maximal return loss is -53.9 dB at 1.46GHz with an absorption bandwidth of 1.72GHz. Microwave absorbing performances of Ni-filled NiCuZn ferrite composites are more excellent than those of dielectric or conductive materials. Besides, the double-layer absorbers are also designed, which shows the high magnetic loss/ high dielectric loss structure posses the higher absorption performances.
In additions, we also investigate the effect of NiO concentration on crystallographic structures, magnetic/electrical characterization, electromagnetic transports and microwave absorptions for MnZn ferrites. The Ni-substituted MnZn ferrites (x≥0.24) have a soft ferrimagnetic behavior with the lower Hc and the higher Ms due to the absence of the antiferromagnetic hematite and the less inter/intra pores. Another interesting phenomenon is observed that crystallographic growths of the uniaxial structures occur on the surface, which it is attributed that Zn evaporations dramatically increase the surface-diffusion rate. Return loss of the heterogeneous Ni-substituted MnZn ferrites with a 6 mm thickness is estimated as -32dB at 2.3 GHz for x=0.24. The Ni-substituted ferrite composites have a higher potential to be designed as a microwave absorber in the GHz range with a thinner thickness.
[1] D. Song, G. Li, History of electromagnetism: observation and utilization of electrical and magnetic phenomena, Guang Xi, China: popular press, 1987
[2] J.F. Keithley, The story of electrical and magnetic measurements: From 500 B.C. to the 1910s, New York: Wiley-IEEE press, 1999.
[3] J. Needham, Physics and Physical Technology, Part 1, Physics, Science and Civilization in China, Taipei, Taiwan: Caves Books, vol.4, 1986.
[4] W. Gorzkowski, H.K. Lachowicz, H. Szymczak, Physics of magnetic materials, World Scientific, 1986.
[5] M.W. Barsoum, Fundamentals of ceramics, McGraw-Hill, 1997.
[6] G. Bate, M.H. Kryder, Magnetism and magnetic fields, 2000
[7] B.D. Cullity, Introduction to magnetic materials, Addison-Wesley, 1972.
[8] R. Valenzuela, Magnetic ceramics, Cambridge, 1994.
[9] J. Smit, H.P.J. Wijn, Ferrites, John Wiley & Sons, 1959.
[10] B.Viswanathan, V.R.K. Murthy, Ferrite materials, Springer-Verlag, 1990.
[11] A. Goldman, Modern Ferrite Technology, Van Nostrand Reinhold, 2006.
[12] V.G. Harris, A. Geiler, Y. Chen, S.D. Yoon, M. Wu, A. Yang, Z. Chen, P. He, P.V. Parimi, X. Zuo, C.E. Patton, M. Abe, O. Acher, C. Vittoria, J. Magn. Magn. Mater. 321 (2009) 2035.
[13] H.S. Yoder, M.L. Keith, Amer. Min. 36 (1951) 519.
[14] F. Bertaut, F. Forrat, Compt. Rend. Acad. Sci. 242 (1956) 382.
[15] MA.Vinnik, J Russ, Inorg Chem 10 (1965) 1164.
[16] R.C. Buchanan, Ceramic materials for electronics, Marcel Dekker, 1986.
[17] C. Sikalidis, Advances in Ceramics, Intech, Chap. 4, 2011.
[18] M.D. Pozar, Microwave Engineering, John Wiley & Sons, 1998.
[19] L.C. Shen, J.A. Kong, Applied ectromagnetism, Chwa, 1997.
[20] S.J. Orfanidis, Electromagnetic wave and antenna, 1999.
[21] S.A. Schelkunoff, H.T. Friis, Antennas theory and practice, John Wiley & Sons, 1952.
[22] T. Rikitake, Magnetic and electromagnetic shielding, Terra scientific publishing company, 1987.
[23] J.J. Goedbloed, Electromagnetic Compatibility, Prentice Hall, 1992.
[24] R.J. Donald White, Michel Mardiguian, Electromagnetic shielding, Interference Control Technologies, Inc., 1988.
[25] R.J. Donald White, Electromagnetic shielding materials and performance, Don White Consultants, 1980.
[26] D.A. Weston, Electromagnetic compatibility Principles and Applications, Marcel Dekker Inc. 1991.
[27] W.H. Emerson, IEEE Trans. Antennas Propag. AP-21 (1973) 484.
[28] W.W. Salisbury, US patent 2599944, 1952.
[29] W. Dallenbach, W. Kleinsteuber, Hochfreq. U Elektroak 152 (1938) 51
[30] J.L. Wallace, IEEE Trans. on magnetics 29 (1993) 4209.
[31] F. Mayer US patent 5872534, 1999.
[32] H. Severin. IRE Trans. Antennas & Propagat. AP-4 (1956) 385.
[33] E.F. Knott, J.F. Shaeffer, M.T. Tuley. Radar cross section, SciTech, (1993)
[34] V. Sunny, P. Kurian, P. Mohanan, P.A. Joy, M.R. Anantharaman, J. Alloys Compd. 489 (2010) 297.
[35] J. Xu, H. Zou, H. Li, G. Li, S. Gan, G. Hong, J. Alloys Compd. 490 (2010) 552.
[36] A. Ghasemi, A. Hossienpour, A. Morisako, X. Liu, A. Ashrafizadeh, Mater. Des. 29 (2008) 112.
[37] S. Kolev, A. Yanev, I. Nedkov, Phys. Stat. Sol.(c) 3 (2006) 1308.
[38] S.H. Hosseini, S.H. Mohseni, A. Asadnia, H..Kerdari, J. Alloys Compd. 509 (2011) 4682.
[39] K. Miura, M. Masuda, M. Itoh, T. Horikawa, K. Machida, J. Alloys Compd. 408 (2006) 1391.
[40] B. Zhang, G. Lu, Y. Feng, J. Xiong, H. Lu, J. Magn. Magn. Mater. 299 (2006) 205.
[41] S. Sugimoto, T. Maeda, D. Book, T. Kagotani, K. Inomata, M. Homma, H. Ota, Y. Houjou, R. Sato, J. Alloys Compd. 330 (2002) 301.
[42] C.K. Yuzcelik, Radar absorbing materials design in system engineering, Naval Postgraduate School, Monterey, (2003).
[43] PN Designs, http://www.microwaves101.com/encyclopedia/sparameters.cfm.
[44] M. Hergert, http://mars.mines.edu/diaperm/system.htm.
[45] A.M. Nicolson, G Ross, IEEE Trans. on Instrument & Measurement 19(6) (1970) 377.
[46] J.J. Baker, E.J. Vanzura, W.A. Kissick, IEEE Trans. Microw. Theory Tech. 38(8) (1990) 1096.
[47] Agilent Technologies, 85071D Product Overview (2006) 2.
[48] H.M. Musal, H.T. Hahn, G.G. Bush, J. Appl. Phys. 63(8) (1988) 3768.
[49] A. Sihvola, IEE Electromagn. Wave Series 47 (1999) 61.
[50] D.A.G. Bruggeman, Ann. Phys. 416 (1935) 636.
[51] T. Hanai, Colloid & Polymer Science 171 (1960) 23.
[52] H. Waki, H. Igarashi, T. Honma, IEEE Trans. Magn. 41 (2005) 1520.
[53] H. Waki, H. Igarashi, T. Honma, Phys. B 372 (2006) 383.
[54] T. Tsutaoka, J. Appl. Phys. 93 (2003) 2789.
[55] J.L. Snoek, Physica 14 (1948) 207.
[56] G.G. Bush, Phyica (Amsterdam) 63 (1988) 3765.
[57] C.G. Koops, Phys. Rev. 83 (1951) 121.
[58] J. Smit, H.P.J. Wijn, Ferrites, Phillips. Tech. Lib., Chap. XII (1959) 229.
[59] H.M. Musal, D.C. Smith, IEEE Trans. Magn. 26 (1990) 1462.
[60] T. Giannakopoulou, A. Kontogeorgakos, G. Kordas, J Magn. Magn. Mater. 263 (2003) 173.
[61] C.W. Nan, Prog. Mater. Sci. 37 (1993) 1.
[62] J. Liu, C.G. Duan, W.G. Yin, W.N. Mei, R.W. Smith, J.R. Hardy, Phys. Rev. B 70 (2004) 144106.
[63] B.W. Li, Y. Shen, Z.X. Yue, C.W. Nan, J. Appl. Phys. 99 (2006) 123909.
[64] M.R. Anantharaman, S. Sindhu, S. Jagatheesan, K.A. Malini, P. Kurian, J. Phys. D Appl. Phys. 32 (1999) 1801.
[65] T. Takanori, U. Masahiro, T. Toshihiko, N. Tatsuya, H. Kenichi, J. Appl. Phys. 78 (1995) 3983.
[66] R.B. Alexandre, L.G. Maria, Nóbrega, C.S.N. Maria, J. Magn. Magn. Mater. 320 (2008) 864.
[67] T. Maeda, S. Sugimoto, T. Kagotani, N. Tezuka, K. Inomata, J. Magn. Magn. Mater. 281 (2004) 195.
[68] M. Rozman, M. Drofenik, J. Am. Ceram. Soc. 81 (1998) 1757.
[69] B.D. Cullity, Elements of X-Ray Diffraction, Chap. 14 (1977) 397.
[70] J.B. Nelson, D.P. Riley, Proc. Phys. Soc. 57 (1945) 160.
[71] K. Williamson, W.H. Hall, Acta Metall. 1 (1953) 22.
[72] M.A.H Donners, J.W. Niemantsverdriet, G.D. With, J. Mater. Res. 15 (2000) 2730.
[73] V.K. Mittal, S. Bera, R. Nithya, M.P. Srinivasan, S. Velmurugan, S.V. Narasimhan, J. Nucl. Mater. 335 (2004) 302.
[74] A. Barba, C. Clausell, J.C. Jarque, M. Monzo, J. Eur. Ceram. Soc. 31 (2011) 2119.
[75] C.V. Thompson, Annu. Rev. Mater. Sci. 30 (2000) 159.
[76] J.M. Olson, M.M. Makhlouf, Metall. Trans. A. 32A (2001) 1261
[77] P.J. Zagg, J.J.M. Ruigrok, A. Noordermeer, M.H.W.M. Delden, P.T. Por, M.T. Rekveldt, D.M. Donnet, J.N. Chapman, J. Appl. Phys. 74 (1993) 4085.
[78] A.J. Bosman, J.H. Van Dall, Adv. Phys. 19 (1970) 1.
[79] B. Gillot, F. Jemmali, Phys. Stat. Sol. A. 76 (1983) 601.
[80] A.I.E. Shora, M.A.E. Hiti, M.K.E Nimr, M.A. Ahmed, A.M.E Hasab, J. Magn. Magn. Mater. 204 (1999) 20.
[81] T. Tsutaoka, J. Appl. Phys. 93 (2003) 2789.
[82] J.C. Papaioannou, G.S. Patermarakis, H.S. Karayianni, J. Phys. Chem. Solids 66 (2005) 839.
[83] M.R. Anantharaman, S. Sindhu, S. Jagatheesan, K.A. Malini, P. Kurian, J. Phys. D: Appl. Phys. 32 (1999) 1801.
[84] A.R. Bueno, M.L. Gregori, M.C.S. Nobrega, J. Magn. Magn. Mater. 320 (2008) 864.
[85] B.T. Lee, H.C. Kim, Jpn. J. Appl. Phys. 35 (1996) 3401.
[86] T. Maeda, S. Sugimoto, T. Kagotani, N. Tezuka, K. Inomata, J. Magn. Magn. Mater. 281 (2004) 195.