研究生: |
楊柏彰 Yang, Bo-Jhang |
---|---|
論文名稱: |
Hardware-friendly Shuffled Message Passing Decoding with Application to Efficient Multi-standard LDPC Decoder Design 硬體友善之縱向混合解碼演算法及其應用於有效率多標準的低密度奇偶檢查碼解碼器 |
指導教授: |
翁詠祿
Ueng, Yeong-Luh |
口試委員: |
王忠炫
吳仁銘 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2011 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 47 |
中文關鍵詞: | 通道編碼 、低密度奇偶檢查碼 、解碼器 |
外文關鍵詞: | Channel coding, low-density parity-check codes, decoder, G.hn, WiMAX, WiFi |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
This paper presents a hardware-friendly shuffled message-passing decoding
(MPD) method that can be used to design efficient multiple-standard lowdensity
parity-check (LDPC) decoders. In this shuffled MPD, two compensation
factors, rather than one factor, are dynamically used in the offset Min-Sum
algorithm such that the number of quantization bits can be reduced without
degradation in error performance. Using the proposed shuffled MPD, the storage
requirements can be further reduced since artificial minimum values, which
do not need to be stored in memory, are used in the check-node operation. In
the shuffled MPD, variable nodes are divided into several groups and decoding
operations are executed group by group such that the critical path can be
shortened in order to realize a high-throughput decoder. We propose an algorithm
to partition these groups such that the hardware cost can be minimized
and the up-to-date decoding messages can be utilized. Using the proposed
techniques, a multi-standard decoder that supports LDPC codes specified in
the ITU G.hn, IEEE 802.11n, and IEEE 802.16e standards was designed and
implemented using a 90-nm CMOS process. This decoder supports 133 codes,
occupies an area of 5.529 mm2, and achieves an information throughput of
1.956 Gbps at a clock frequency of 400 MHz based on post-layout results.
在這篇論文中,我們提出了一種硬體友好並適用縱向混合解碼演算法
(Shuffled MPD)和高效率的解碼器架構建構在多重通訊標準下的低密度
奇偶校驗碼(LDPC)。在Shuffled MPD中,兩個補償因子取代一個補償
因子動態地用於補償演算法,這樣的量化比特數可以減少且不退化更正錯
誤能力的表現。改良Shuffled MPD的演算法,並提出人工的第三小值不須
儲存在記憶體中用於檢查節點運算,在低碼率下,如此可大大減少儲存的
空間。在Shuffled MPD,可將位元節點分成若干群組,解碼依序運算若干
群組,硬體的主要路徑(Critical Path)可以被縮短,以實現高吞吐量的
解碼器。我們提出使用搜尋演算法來分割這些群組,可讓記憶體分配的面
積最小化,並能有效率地降低效能的衰減。使用上述我們提出的技術,一
個多標準ITU G.hn,IEEE 802.11n和IEEE 802.16e的LDPC解碼器設計並使
用90-nm CMOS製程。這個解碼器可以支援3種不同通訊標準共133種模態,
在post-layout下的結果,占了面積5.529mm2,且在頻率為400MHz之下最快
可達到資料吞吐量1.956 Gbps。
[1] R. G. Gallager, “Low density parity check codes,” IRE Trans. Inform.
Theory, vol. IT-8, pp. 21-28, Jan. 1962.
[2] D.-J.-C. MacKay, “Good error-correcting codes based on very sparse
matrices,” IEEE Trans. Inf. Theory, vol. 45, no. 2, pp. 399-431, March
1999.
[3] A.-J. Blanksby and C.-J. Howland, “A 690-mW 1-Gb/s 1024-b, rate-1/2
low-density parity-check code decoder,” IEEE J. Solid-State Circuits,
vol. 37, no. 3, pp. 404-412, March 2002.
[4] Y.-L. Ueng, C.-J. Yang, K.-C. Wang, and C.-J. Chen, “A multi-mode
shuffled iterative decoder architecture for high-rate RS-LDPC codes,”
IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57, no. 10, pp. 2790-
2803, Oct. 2010.
[5] ITU-T G.hn standard for wired home networking. [On-line]. Available:
http://www.homegridforum.org/home/
[6] IEEE 802.16e WiMAX standard, IEEE P802.16e-2005, Oct. 2005.
[7] IEEE 802.11 Wireless LANs WWiSE Proposal: High throughput extension
to the 802.11 standard. IEEE 11-04-0886-00-000n
[8] C.-H. Liu, C.-C. Lin, S.-W. Yen, C.-L. Chen, H.-C. Chang, C.-Y. Lee,
Y.-S. Hsu, and S.-J. Jou, “Design of a multimode QC-LDPC decoder
based on shift-routing network,” IEEE Trans. Circuits Syst. II, Express
Briefs, vol. 56, no. 9, pp. 734-738, Sept. 2009.
[9] D. Bao, B. Xiang, R. Shen, A. Pan, Y. Chen, and X. Y. Zeng, “Programmable
architecture for flexi-mode QC-LDPC decoder supporting
wireless LAN/MAN applications and beyond,” IEEE Trans. Circuits
Syst. I, vol. 57, no. 1, Jan. 2010.
[10] R. Tanner, “A recursive approach to low complexity codes,” IEEE Trans.
Inform. Theory, vol. 27, no. 5, pp. 533-547, Sept. 1981.
[11] M.-M. Mansour and N.-R. Shanbhag, “High-throughput LDPC decoders,”
IEEE Trans. VLSI Systems, vol. 11, no. 6, pp. 976-996, Dec.
2003.
[12] D.-E. Hocevar, “A reduced complexity decoder architecture via layered
decoding of LDPC codes,” in Proc. IEEE Workshop on Signal Processing
Systems (SIPS), pp. 107-112, Oct. 2004.
[13] M. Alles, T. Vogt, and N. Wehn, “FlexiChaP: A reconfigurable ASIP for
convolutional, turbo, and LDPC code decoding,” in Proc. Turbo Codes
and Related Topics, pp. 84-89, Sept. 2008.
[14] Y. L.Wang, Y. L. Ueng, C. L. Peng, and C. J. Yang, “Processing-task arrangement
for a low-complexity full-modeWiMAX LDPC Codec,” IEEE
Trans. Circuits Syst. I, Reg. Papers, vol. 58, no. 2, pp. 415-428, Feb. 2011.
[15] J. Zhang and M.-P.-C. Fossorier, “Shuffled iterative decoding,” IEEE
Trans. Commun., vol. 53, no. 2, pp. 209-213, Feb. 2005.
[16] M.-P.-C. Fossorier, M. Mihaljevic, and H. Imai, “Reduced complexity
iterative decoding of low-density parity check codes based on belief propagation,”
IEEE Trans. Commum., vol. 47, no. 5, pp. 673-680, May 1999.
[17] J. Chen and M.-P.-C. Fossorier, “Density evolution for two improved
BP-based decoding algorithms of LDPC codes,” IEEE Commum. Lett.,
vol. 6, pp. 208-210, May 2002.
[18] G. Gentile, M. Rovini, and L. Fanucci, “Low-complexity architectures of
a decoder for IEEE 802.16e LDPC codes,” in Proc. Euromicro Conf. on
Digital System Design Architectures, Methods and Tools (DSD), pp. 369-
375, Aug. 2007.
[19] K. Zhang, X. Huang, and Z. Wang, “High-throughput layered decoder
implementation for quasi-cyclic LDPC codes,” IEEE Journal on Selected
Areas in Commun., vol. 27, no. 6, pp. 985-994, Aug. 2009.
[20] Y.-Chen and K.-K. Parhi, “Overlapped message passing for quasi-cyclic
low-density parity check codes,” IEEE Trans. Circuit Syst. I, Reg. Pa-
pers, vol. 51, no. 6, pp. 1106-1113, June 2004.
[21] G. Masera, F. Quaglio, and F. Vacca, “Implementation of a flexible
LDPC decoder,” IEEE Trans. Circuits. Syst. II, Exp. Briefs, vol. 54, no.
6, pp. 542-546, June 2007.
[22] M. Karkooti, P. Radosavljevic, and J.-R. Cavllaro, “Configurable, high
throughput, irregular LDPC decoder architecture tradeoff analysis and
implementation,” in Proc. Int. Conf. on Application-specific Systems,
Architectures and Processors (ASAP), pp. 360-367, Sept. 2006.
[23] T. Brack, M. Alles, T. Lehnigk-Emden, F. Kienle, N. Wehn, N.-E.
L’Insalata, F. Rossi, M. Rovini, and L. Fanucci, “Low complexity LDPC
code decoders for next generation standards,” in Proc. Design, Automa-
tion and Test in Europe Conf. and Exhibition, pp. 16-20, April 2007.
[24] X.-Y. Shih, C.-Z. Zhan, C.-H. Lin, and A.-Y. Wu, “An 8.29 mm2 52
mW multi-mode LDPC decoder design for mobile WiMAX system in
0.13 μm CMOS process,” IEEE J. Solid-State Circuits, vol. 43, no. 3,
pp. 672-683, March 2008.
[25] Xin-Yu Shih, Cheng-Zhou Zhan, and An-Yeu Wu, “A 7.39mm2 76mW
(1944, 972) LDPC decoder chip for IEEE 802.11n applications,” IEEE
Asian Solid-State Circuits Conference, pp. 301-304, Nov. 2008.
[26] K. Zhang, X. Huang, and Z. Wang, “A high-throughput LDPC decoder
architecture with rate compatibility,” IEEE Trans. Circuits Syst. I, vol.
58, no. 4, April 2011.