研究生: |
洪建瑋 Hong, Jian Wei |
---|---|
論文名稱: |
二維等向預應變微影技術 Two-Dimensional Isotropic Pre-Strain Lithography |
指導教授: |
羅丞曜
Lo, Cheng Yao |
口試委員: |
陳榮順
Chen, Rongshun 陳政寰 Chen, Cheng Huan |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 71 |
中文關鍵詞: | 彈性基板 、機械拉伸 、圖樣微縮 、預應變 、半導體製程 |
外文關鍵詞: | Elastic substrate, mechanical stretching, pattern modification, pre-strain, semiconductor process |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出一種以環狀機械夾具提供彈性基板在xy平面上360°等向應變的方法及其在微影製程後之圖樣調變方法。藉由此夾具對200μm厚PDMS基板分別施加10%、20%及40%的等向應變後,再以微影製程製作10nm厚之銀金屬圖樣。此些金屬圖樣在微影製程後藉由釋放所施加之應變分別達成17%、30%及49%的面積微縮。相較於分別理論值之17.4%、30.6%及49%的面積微縮,此研究證明了由理論、模擬至實作的一致性,並成功地改善過往手法僅能於xy平面上施加一維應變之不實用性。
此研究除金屬圖樣之面積證明外,其不隨圖樣之大小、位置及方向而改變微縮率的特性暗示了此手法於微影製程中可以不變的機台、參數及耗材達成圖樣尺寸微縮的目的。
This research proposed a ring-shape mechanical clamp to provide 360° isotropic strain on the xy-plane onto an elastic substrate to modify the patterns above it after lithography. By applying the 200μm-thick PDMS substrate 10%, 20%, and 40% isotropic strain followed by 10nm thick Ag pattering by lithography, the patterns showed 17%, 30%, and 49% area reduction respectively. Compared with their respective 17.4%, 30.6%, and 49%theoretical reduction, the research showed identical theory, simulation, and experimental works. This research improved the impracticality of the previous one-dimensional pre-strain lithography on the xy-plane.
The results not only showed expected area reduction, but also showed the independency of size, location, and orientation of the pattern. The results implied that pattern size reduction of lithography can be realized without changing the facilities, parameters, and materials.
[1]Y. W. Su, C. S. Wu, C. C. Chen, and C.D. Chen, “Fabrication of Two-Dimensional Arrays of CdSe Pillars Using E-Beam Lithography and Electrochemical Deposition,” Advanced Materials 15 (2003) 49-51.
[2]L. Li, T. Zhai, H. Zeng, X. Fang, Y. Bando and D. Golberg, “Polystyrene sphere-assisted one-dimensional nanostructure arrays: synthesis and applications,” Journal of Materials Chemistry 21 (2011) 40-56.
[3]F. Paul and D. Stelios, “Physical verification of 20nm designs through integrated double-patterning analysis and repair” Synopsys, Inc. (2012).
[4]S. P. Lacour, and S. Wagner, “Stretchable gold conductors on elastomeric substrates,” Applied Physics Letters 82 (2003) 2404-2406.
[5]S. P. Lacour, D. Chan, and S. Wagner, “Mechanisms of resersible stretchability of thin metal films on elastomeric substrates,” Applied Physics Letters 88 (2006) 204103.
[6]S. P. Lacour, J. Jones, Z. Suo, and S. Wagner, “Design and
performance of thin metal film interconnects for skin-like electronic circuits,” IEEE Electron Device Letters 25 (2004) 179-181.
[7]C. Yu, K. O’Brien, Y. H. Zhang, H. Yu, and H. Jiang, “Yunable optical gratings based in buckled nanoscale thin films on transparent elastomeric substrates,” Applied physics Letters 96 (2010) 041111.
[8]I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Characterization of the tunable response of highly strained compliant optical metamaterials,” Philosophical Transactions 369 (2011) 3447-3455.
[9]A. N. Simonov, O. Akhzar-Mehr, and G. Vdovin, “Light scanner based on a viscoelastic stretchable grating,” Optics Letters 30 (2005) 949-951.
[10]S. Xu, “Fabrication of Metal Tunable Gratings Based on PDMS,”Journal of Materials Science & Engineering 29 (2011) 742-746.
[11]J. Jeong, S. Kim, J. Cho, and Y. Hong, “Stable Stretchable Silver Electrode Directly Deposited on Wavy Elastomeric Substrate,” IEEE Electron Device Letters 30 (2009) 1284-1286.
[12]S. Chung, J. Lee, H. Song, S. Kim, J. Jeong, and Y. Honga,
“Inkjet-printed stretchable silver electrode on wave structured elastomeric substrate,” Applied Physics Letters 98 (2011) 153110.
[13] M. Stach, E. C. Chang, C. Y. Yang, and C. Y. Lo, “Post-lithography pattern modification and its application to a tunable wire grid
polarizer,” Nanotechnology 24 (2013) 115306.
[14]J. W. Hong, C. Y. Yang and C. Y. Lo, “Critical Dimension and Pattern Size Enhancement Using Pre-Strained Lithography,” Applied Physics Letters 105 (2014) 154103.
[15]J. Rösler, H. Harders and M. Bäker, 2007. Mechanical Behaviour of Engineering Materials, 257-292. New York: Springer.
[16]D. Schurig, J. J. Monk, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314 (2006) 977-980.
[17]F. Schneider, T Fellner, J Wilde and U Wallrabe, “Mechanical properties of silicones for MEMS,” Journal of Micromechanics and Microengineering 18 (2008) 065008.