簡易檢索 / 詳目顯示

研究生: 王啟倫
Wang, Chi-Lun
論文名稱: 多變數動態次結構系統之混合H2/H∞迴授控制器設計
Mixed H2/H∞ Feedback Control of Multivariable Dynamically Substructured Systems
指導教授: 杜佳穎
Tu, Jia-Ying
口試委員: 陳博現
Bor-Sen Chen
白明憲
Ming-Sian Bai
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 101
中文關鍵詞: 動態次結構系統即時混合測試H∞強健控制H2最佳化控制混合H2/H∞強健性最佳化控制設計干擾抑制類黎卡提不等式線性矩陣不等式
外文關鍵詞: dynamically substructured system, real-time hybrid simulation, H∞ robust control, H2 optimal control, Mixed H2/H∞ control, disturbance rejection, Riccati-like inequality, linear matrix inequality
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   動態次結構系統測試法的主要概念是將一個完整的工程受測系統拆解成為數個次結構系統,數值次結構系統由線性元件所組成,在電腦中建模並透過即時運算來做模擬;物理次結構則由物理試體以及傳動系統所組成,其中傳動系統位於數值次結構和物理次結構之間的界面,包含著致動器、內迴路控制器以及感測器。在動態測試的過程當中,致動器所產生的動態特性和干擾訊號會導致數值次結構的輸出和物理次結構的輸出不同步,也就是會有同步誤差的產生,使的動態次結構的測試失真。因此本論文提出兩個進階控制器:一個是使用狀態空間線性前饋控制器搭配H∞反饋控制器,來保證系統的強健控制表現;另一個則是使用狀態空間線性前饋控制器搭配混合H2/H∞反饋控制器,來保證系統的最佳化控制表現以及強健控制表現。根據數值次結構框架將動態次結構的控制器設計問題,轉換成為凸優化問題,並使用MATLAB LMI toolbox所提供的演算法來合成控制器的參數。

      本論文使用多變數質量彈簧阻尼系統來驗證控制器的設計,在常態與改變傳動系統參數的條件下比較不同控制器之間控制表現,並分析其的優缺點與強健性。最後從模擬與實驗中皆得到相同的結果,狀態空間線性控制器可以很有效的補償內迴路控制器,但無法知道極點的位置該如何設計;狀態空間線性前饋控制器搭配H∞反饋控制器可以完整的對次結構系統動態分析,來做控制器的強健性設計,但在控制器設計的過程中仍然存在著一些限制;狀態空間線性前饋控制器搭配混合H2/H∞反饋控制器提供了理論上的依據,可以設計出使用最小控制能量來達到最佳化控制表現與強健性控制表現,但實際上在設計過程中會容易受到系統特徵值矩陣的影響,使得控制表現不理想。


      Dynamically substructured system testing method divides an original system into several substructures. In the numerical substructure, linear components are simulated via real-time computation. In the physical substructure, a transfer system, which includes actuators and sensors, is installed to interface the numerical and physical parts. During the test, the unwanted dynamic and disturbance noise from the actuator inevitably cause synchronization errors between the outputs of numerical and physical substructures at the interface, and consequently result in unsuccessful tests. Therefore, this study proposes advanced control using the feedforward state-space linear substructuring controller plus the H∞ feedback controller to ensure robust control performance and use the feedforward state-space linear substructuring controller plus the mixed H2/H∞ feedback controller to ensure optimal and robust synchronization. The problem of controller design is transformed to convex optimization problem according to a numerical-substructure-based framework and is solved based on the algorithm provided by MATLAB LMI toolbox to synthesis the controller.

      A multivariable mass-spring-damper substructured system is developed to verify the proposed control strategy via numerical studies and experiment studies. After comparing the advantages, disadvantages, and robustness of different control system design, this thesis shows that the pole-placement feedback controller has good robust performance but do not know how to choose the pole location; the H∞ feedback controller provide a theoretical way to design the robust controller but there exist some limits in the design process; the mixed H2/H∞ feedback controller provide a theoretical way to design the robust controller using the minimum control energy but it is easy to be affected by the eigenmode matrix of control system.

    中文摘要 I Abstract II 目錄 III 圖目錄 V 表目錄 VII 第一章 緒論 1 1.1 文獻回顧 1 1.2 研究動機 9 1.3 研究目標 9 1.4 本文架構 10 第二章 動態次結構系統和強健性分析介紹 12 第三章 H∞強健控制理論和演算法之分析介紹 16 3.1 H∞強健控制理論分析 16 3.1.1 強健控制指標推導 16 3.1.2 強健控制穩定性分析 18 3.2 線性矩陣不等式求解 24 3.2.1線性矩陣不等式介紹 25 3.2.2凸優化問題介紹與求解 28 第四章 動態次結構系統之強健控制器設計 31 4.1 狀態空間線性控制器設計 31 4.2 混合H2/H∞強健性控制器之最佳化設計 33 4.2.1 H2最佳化控制器設計 33 4.2.2 H∞強健性控制器設計 36 4.2.3 混合H2/H∞強健性最佳化控制器設計 39 第五章 動態次結構系統之實驗架設 40 5.1 雙變數輸入的質量彈簧阻尼系統設計 40 5.2 次結構系統的動態與分析 42 5.3 實驗機台與儀器設備介紹 45 5.4 系統識別 53 5.5 次結構系統的控制器合成 58 5.5.1 狀態空間線性前饋控制器的合成 58 5.5.2 狀態空間強健性反饋控制器的合成 60 第六章 模擬與實驗結果及討論 64 6.1 雙變數質量彈簧阻尼系統模擬結果 66 6.2 雙變數質量彈簧阻尼系統實驗結果 75 6.3 模擬結果討論 84 6.4 實驗結果討論 90 第七章 結論與未來工作 96 7.1 結論 96 7.2 未來工作 98 參考資料 99

    1. K. E. Jackson, et al., "A summary of DOD-sponsored research performed at NASA Langley's impact dynamics research facility", Journal of the American Helicopter Society, 2006. 51(1): pp. 59-69.
    2. Y. Ying, Z. Guangyao, and D. Jianwei. "Analysis of vehicle's frontal crash based on structures' section forces". in 2006 7th International Conference on Computer-Aided Industrial Design and Conceptual Design, 17-19 Nov. 2006. 2006. Piscataway, NJ, USA: IEEE.
    3. H. Chanson, "Turbulent air-water flows in hydraulic structures: Dynamic similarity and scale effects", Environmental Fluid Mechanics, 2009. 9(2): pp. 125-142.
    4. F. Aghili, "A mechatronic testbed for revolute-joint prototypes of a manipulator", IEEE Transactions on Robotics, 2006. 22(6): pp. 1265-1273.
    5. S. Oncu, et al. "Robust yaw stability controller design for a light commercial vehicle using a hardware in the loop steering test rig". in 2007 IEEE Intelligent Vehicles Symposium, 13-15 June 2007. 2007. Piscataway, NJ, USA: IEEE.
    6. A. Cunha, E. Caetano, and F. Magalhaes, "Output-only dynamic testing of bridges and special structures", Structural Concrete, 2007. 8(2): pp. 67-85.
    7. D. P. Stoten and R. A. Hyde, "Adaptive control of dynamically substructured systems: the single-input single-output case", Proceedings of the Institution of Mechanical Engineers, Part I (Journal of Systems and Control Engineering), 2006. 220(I2): pp. 63-79.
    8. J. Y. Tu, et al., "A state-space approach for the control of multivariable dynamically substructured systems", Proceedings of the Institution of Mechanical Engineers, Part I (Journal of Systems and Control Engineering), 2011. 225(7): pp. 935-952.
    9. O. S. Bursi, et al., "Novel coupling Rosenbrock-based algorithms for real-time dynamic substructure testing", Earthquake Engineering and Structural Dynamics, 2008. 37(3): pp. 339-360.
    10. B. S. Chen and Y. T. Chang, "Fuzzy state-space modeling and robust observer-based control design for nonlinear partial differential systems", IEEE Transactions on Fuzzy Systems, 2009. 17(5): pp. 1025-1043.
    11. C. P. Lamarche, et al., "Comparison between real-time dynamic substructuring and shake table testing techniques for nonlinear seismic applications", Earthquake Engineering and Structural Dynamics, 2010. 39(12): pp. 1299-1320.
    12. O. S. Bursi, et al., "Rosenbrock-based algorithms and subcycling strategies for real-time nonlinear substructure testing", Earthquake Engineering and Structural Dynamics, 2011. 40(1): pp. 1-19.
    13. J. Liu, et al., "A novel integrated compensation method for actuator dynamics in real-time hybrid structural testing", Structural Control and Health Monitoring, 2013. 20(7): pp. 1057-1080.
    14. P. A. Bonnet, M. S. Williams, and A. Blakeborough, "Compensation of actuator dynamics in real-time hybrid tests", Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering, 2007. 221(2): pp. 251-264.
    15. D. P. Stoten, J. Y. Tu, and G. Li. "Adaptive control of generalised dynamically substructured systems". in 17th World Congress, International Federation of Automatic Control, IFAC, July 6, 2008 - July 11, 2008. 2008. Seoul, Korea, Republic of: Elsevier.
    16. C. Chen and J. M. Ricles, "Analysis of actuator delay compensation methods for real-time testing", Engineering Structures, 2009. 31(11): pp. 2643-2655.
    17. X. Gao, N. Castaneda, and S. J. Dyke, "Real time hybrid simulation: From dynamic system, motion control to experimental error", Earthquake Engineering and Structural Dynamics, 2013. 42(6): pp. 815-832.
    18. J. Y. Tu, "Development of numerical-substructure-based and output-based substructuring controllers", Structural Control and Health Monitoring, 2013. 20(6): pp. 918-936.
    19. J. Y. Tu, et al., "Dynamics, control and real-time issues related to substructuring techniques: Application to the testing of isolated structure systems", Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering, 2013. 227(6): pp. 507-522.
    20. B. S. Chen, T. S. Lee, and J. H. Feng, "A nonlinear H∞ control design in robotic systems under parameter perturbation and external disturbance", International Journal of Control, 1994. 59(2): pp. 439-461.
    21. B. S. Chen, C. S. Tseng, and H. J. Uang, "Robustness design of nonlinear dynamic systems via fuzzy linear control", IEEE Transactions on Fuzzy Systems, 1999. 7(5): pp. 571-585.
    22. C. S. Tseng, B. S. Chen, and H. J. Uang, "Fuzzy tracking control design for nonlinear dynamic systems via T-S fuzzy model", IEEE Transactions on Fuzzy Systems, 2001. 9(3): pp. 381-392.
    23. B. S. Chen and Y. C. Wang, "On the attenuation and amplification of molecular noise in genetic regulatory networks", BMC Bioinformatics, 2006.
    24. Y. T. Chang and B. S. Chen. "A Fuzzy Approach for Robust Reference Tracking Control of Nonlinear Distributed Parameter Time-Delayed Systems and Its Biological Application". in 2010 IEEE International Conference on Systems, Man and Cybernetics (SMC 2010), 10-13 Oct. 2010. 2010. Piscataway, NJ, USA: IEEE.
    25. B. S. Chen and Y. P. Lin, "A Unifying Mathematical Framework for Genetic Robustness, Environmental Robustness, Network Robustness and their Trade-off on Phenotype Robustness in Biological Networks Part I", Evolutionary Bioinformatics, 2013.
    26. J. Doyle, K. Zhou, and B. Bodenheimer. "Optimal control with mixed H2 and H∞ performance objectives". in Proceedings of the 1989 American Control Conference (Cat. No.89CH2772-2), 21-23 June 1989. 1989. Green Valley, AZ, USA: American Autom. Control Council.
    27. Z. Kemin, et al., "Mixed H2 and H∞ performance objectives. I. Robust performance analysis", IEEE Transactions on Automatic Control, 1994. 39(8): pp. 1564-1574.
    28. J. Doyle, et al., "Mixed H2 and H∞ performance objectives. II. Optimal control", IEEE Transactions on Automatic Control, 1994. 39(8): pp. 1575-1587.
    29. C. Scherer, P. Gahinet, and M. Chilali, "Multiobjective output-feedback control via LMI optimization", IEEE Transactions on Automatic Control, 1997. 42(7): pp. 896-911.
    30. B. S. Chen, C. S. Tseng, and H. J. Uang, "Mixed H2/H∞ fuzzy output feedback control design for nonlinear dynamic systems: an LMI approach", IEEE Transactions on Fuzzy Systems, 2000. 8(3): pp. 249-265.
    31. H. K. Khalil, "Nonlinear Systems". 1992, London, U.K.: Macmillan.
    32. S. Boyd, et al., "Linear matrix inequalities in system and control theory". Vol. 85. 1994. i-ix.
    33. J. Dattorro, "Convex Optimization & Euclidean Distance Geometry". 2005, California, U.S.
    34. A. Nemirovskii and P. Gahinet. "The projective method for solving linear matrix inequalities". in Proceedings of 1994 American Control Conference - ACC '94, 29 June-1 July 1994. 1994. New York, NY, USA: IEEE.
    35. J. Kautsky, N. K. Nichols, and P. van Dooren, "Robust pole assignment in linear state feedback", 1985. 41(5): pp. 1129-1155.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE