簡易檢索 / 詳目顯示

研究生: 梨 芳
Divine Rhea J. Ceruma
論文名稱: 以膜表面圖案設計增強 PEMFC 性能: 熱和水傳輸相互作用的研究
Enhancing Proton Exchange Membrane Fuel Cell (PEMFC) performance through membrane surface patterning: Investigation of heat and water transport interactions
指導教授: 林昭安
Lin, Chao-An
口試委員: 陳慶耀
Chen, Ching-Yao
張敬
Chang, Ching
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 49
中文關鍵詞: PEMFC燃料電池圖案表面膜模擬
外文關鍵詞: pattern surface membrane
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • N/A


    Proton Exchange Membrane Fuel Cells (PEMFCs) offer a sustainable solution for clean energy generation. This study investigates the effects of membrane surface patterning on PEMFC performance using a three-dimensional, steady-state, laminar, incompressible, two-phase model developed with the finite volume method. Computational simulations were employed to analyze how pattern geometry influences current density, power density, temperature distribution, and water retention. Patterned membranes increased the active surface area by 13.20%, resulting in a 6.16% enhancement in current density at 0.6 V and an increase in power density from 0.46 to 0.49 W/cm². Patterning led to more uniform temperature distribution and higher water content on the anode side due to enhanced capillary effects. Parametric studies on pattern width and height revealed that balanced configurations optimize performance: equal width-spacing ratios improved current density by 1.28%, while moderate increases in pattern height enhanced performance, with diminishing returns beyond 3 µm. These findings highlight membrane patterning as a practical strategy for improving PEMFC efficiency providing a foundation for future experimental and design advancements.

    Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Literature Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Motivation and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Mathematical Formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1 Model Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.1 Equation for Mass Conservation . . . . . . . . . . . . . . . . . . . . . . 9 2.2.2 Equation for Momentum Conservation . . . . . . . . . . . . . . 12 2.2.3 Equation for Species Conservation . . . . . . . . . . . . . . . . . . . 13 2.2.4 Equation for Charge Transport Conservation . . . . . . . . . . 14 2.2.5 Equation for Energy Conservation . . . . . . . . . . . . . . . . . . . 15 2.2.6 Equation for Dissolve Water . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.7 Equation for Polarization Curve . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3 Model Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3 Numerical Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.1 Discretization of the Transport Equation . . . . . . . . . . . . . . . . 19 3.2 Linear Equation Solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.2.1 Algebraic Multigrid Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.2.2 Bi- Conjugate Gradient Squared Solver . . . . . . . . . . . . . . . 20 3.3 Numerical Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.1 The grid independence test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.2 Comparison to experimental results . . . . . . . . . . . . . . . . . . . . 23 4.3 Effect of surface pattern on performance . . . . . . . . . . . . . 24 4.3.1 Effect on current density . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.3.2 Effect on power density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.3.3 Effect on temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.3.3 Effect on water saturation . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.4 Effect of varying the operating temperature . . . . . . . . . . . 32 4.5 Effect of membrane localized thinning . . . . . . . . . . . . . . . . 33 4.5 Effect of varying the membrane structure . . . . . . . . . . . . . 34 4.5.1 Effect of membrane pattern width . . . . . . . . . . . . . . . . . . 35 4.5.2 Effect of membrane pattern height . . . . . . . . . . . . . . . . . 36 4.5.3 Optimal pattern structure . . . . . . . . . . . . . . . . . . . . . . . . . 38 5 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 42 5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

    [1] J. Pavle, "Overview of new trends in energetics," International Scientific Conference EMAN: Economics & Management: How to Cope with Disrupted Times, 2022. doi: 10.31410/eman.2022.283
    [2] World Economic Forum, "Hydrogen: How to harness its potential for our climate goals," 2022. [Online]. Available: https://www.weforum.org/agenda/2022/03/hydrogen-decarbonization-climate-change-energy/
    [3] A. B. Stambouli, "Fuel cells: The expectations for an environmental-friendly and sustainable source of energy," Renewable and Sustainable Energy Reviews, vol. 15, no. 9, pp. 4507-4520, 2011. https://doi.org/10.1016/j.rser.2011.07.100
    [4] Y. Wang, K. S. Chen, J. Mishler, S. C. Cho, and X. C. Adroher, "A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research," Applied Energy, vol. 88, no. 4, pp. 981-1007, 2011. https://doi.org/10.1016/j.apenergy.2010.09.030
    [5] J. Lindorfer, D. C. Rosenfeld, and H. Böhm, "Fuel cells," Future Energy, pp. 495-517, 2020. https://doi.org/10.1016/b978-0-08-102886-5.00023-2
    [6] I. Staffell, D. Scamman, A.V. Abad, P. Balcombe, P.E. Dodds, P. Ekins, N. Shah and K.R. Ward. "The role of hydrogen and fuel cells in the global energy system," Energy & Environmental Science, vol. 12, no. 2, pp. 463-491, 2019. https://doi.org/10.1039/c8ee01157e
    [7] L. Fan, Z. Tu, and S. H. Chan, "Recent development of hydrogen and fuel cell technologies: A review," Energy Reports, vol. 7, pp. 8421-8446, 2021. https://doi.org/10.1016/j.egyr.2021.08.003
    [8] A. Barrio, J. Parrondo, J.I. Lombraña, M. Uresandi, and F. Mijangos, "Influence of manufacturing parameters on MEA and PEMFC performance," International Journal of Chemical Reactor Engineering, vol. 6, no. 1, 2008. https://doi.org/10.2202/1542-6580.1533
    [9] S. J. Peighambardoust, S. Rowshanzamir, and M. Amjadi, "Review of the proton exchange membranes for fuel cell applications," International Journal of Hydrogen Energy, vol. 35, no. 17, pp. 9349-9384, 2010. https://doi.org/10.1016/j.ijhydene.2010.05.017
    [10] E. H. Majlan, D. Rohendi, W. R. W. Daud, T. Husaini, and M. Haque, "Electrode for proton exchange membrane fuel cells: A review," Renewable and Sustainable Energy Reviews, vol. 89, pp. 117-134, 2018. https://doi.org/10.1016/j.rser.2018.03.007
    [11] A. Ozden, S. Shahgaldi, X. Li, and F. Hamdullahpur, "A review of gas diffusion layers for proton exchange membrane fuel cells—with a focus on characteristics, characterization techniques, materials and designs," Progress in Energy and Combustion Science, vol. 74, pp. 50-102, 2019. https://doi.org/10.1016/j.pecs.2019.05.002
    [12] J. Larminie and A. Dicks, "Fuel cell systems explained," John Wiley & Sons Ltd., pp. 84-85, 1999.
    [13] U.S. Department of Energy, Office of Fossil Energy, National Energy Technology Laboratory, "Fuel cell handbook (7th ed.)," DOE/NETL-2019/1978, 2019.
    [14] S. Bhatt, B. Gupta, V. K. Sethi, and M. Pandey, "Polymer exchange membrane (PEM) fuel cell: a review," International Journal of Current Engineering and Technology, vol. 2, no. 1, pp. 219-226, 2012.
    [15] M. Ji and Z. Wei, "A review of water management in polymer electrolyte membrane fuel cells," Energies, vol. 2, no. 4, pp. 1057-1106, 2009. https://doi.org/10.3390/en20401057
    [16] S. C. Kishore, S. Perumal, R. Atchudan, M. Alagan, M. A. Wadaan, and A. Baabbad, "Recent advanced synthesis strategies for the nanomaterial-modified proton exchange membrane in fuel cells," Membranes, vol. 13, no. 6, p. 590, 2023. https://doi.org/10.3390/membranes13060590
    [17] V. Vijayalekshmi and D. Khastgir, "Eco-friendly methanesulfonic acid and sodium salt of dodecylbenzene sulfonic acid doped cross-linked chitosan based green polymer electrolyte membranes for fuel cell applications," Journal of Membrane Science, vol. 523, pp. 45-59, 2017. https://doi.org/10.1016/j.memsci.2016.09.058
    [18] R. P. Parreño and A. B. Beltran, "Hybrid composite of Nafion with surface-modified electrospun polybenzoxazine (PBZ) fibers via ozonation as fillers for proton conducting membranes of fuel cells," RSC Advances, vol. 12, no. 16, pp. 9512-9518, 2022. https://doi.org/10.1039/d2ra00830k
    [19] S. Kang, G. Bae, S.-K. Kim, D.-H. Jung, Y.-G. Shul, and D.-H. Peck, "Performance of a MEA using patterned membrane with a directly coated electrode by the bar-coating method in a direct methanol fuel cell," International Journal of Hydrogen Energy, vol. 43, no. 24, pp. 11386-11396, 2018. https://doi.org/10.1016/j.ijhydene.2018.04.086
    [20] O. Heinz, M. Aghajani, A. R. Greenberg, and Y. Ding, "Surface-patterning of polymeric membranes: fabrication and performance," Current Opinion in Chemical Engineering, vol. 20, pp. 1-12, 2018. https://doi.org/10.1016/j.coche.2018.01.008
    [21] G. Zhang, L. Fan, J. Sun, and K. Jiao, "A 3D model of PEMFC considering detailed multiphase flow and anisotropic transport properties," International Journal of Heat and Mass Transfer, vol. 115, pp. 714-724, 2017. https://doi.org/10.1016/j.ijheatmasstransfer.2017.07.102
    [22] B. Dadda, S. Abboudi, R. Zarrit, and A. Ghezal, "Heat and mass transfer influence on potential variation in a PEMFC membrane," International Journal of Hydrogen Energy, vol. 39, no. 27, pp. 15238-15245, 2014. https://doi.org/10.1016/j.ijhydene.2014.04.217
    [23] G. Soubeyran, F. Micoud, B. Morin, M. Reytier, and J. Poirot-Crouvezier, "Improved operating strategies for the optimization of PEMFC system performance," Journal of Power Sources, vol. 597, p. 234089, 2024. https://doi.org/10.1016/j.jpowsour.2024.234089
    [24] X. Deng, J. Zhang, Z. Fan, W. Tan, G. Yang, W. Wang, W. Zhou & Z. Shao, "Understanding and engineering of multiphase transport processes in membrane electrode assembly of proton-exchange membrane fuel cells with a focus on the cathode catalyst layer: a review," Energy & Fuels, vol. 34, no. 8, pp. 9175-9188, 2020. https://doi.org/10.1021/acs.energyfuels.0c02101
    [25] R. O’Hayre, S. J. J. Lee, S. Cha, and F. B. Prinz, "A sharp peak in the performance of sputtered platinum fuel cells at ultra-low platinum loading," Journal of Power Sources, vol. 109, no. 2, pp. 483-493, 2002. https://doi.org/10.1016/s0378-7753(02)00238-0
    [26] W. Jeong, G. Y. Cho, S. W. Cha, and T. Park, "Surface roughening of electrolyte membrane for Pt- and Ru-sputtered passive direct methanol fuel cells," Materials, vol. 12, no. 23, p. 3969, 2019. https://doi.org/10.3390/ma12233969
    [27] J. W. Bae, Y.-H. Cho, Y.-E. Sung, K. Shin, and J. Y. Jho, "Performance enhancement of polymer electrolyte membrane fuel cell by employing line-patterned Nafion membrane," Journal of Industrial and Engineering Chemistry, vol. 18, no. 3, pp. 876-879, 2012. https://doi.org/10.1016/j.jiec.2012.01.019
    [28] J. K. Koh, Y. Jeon, Y. I. Cho, J. H. Kim, and Y. G. Shul, "A facile preparation method of surface patterned polymer electrolyte membranes for fuel cell applications," Journal of Materials Chemistry A, vol. 2, no. 33, pp. 8652-8659, 2014. https://doi.org/10.1039/C4TA00674G
    [29] S. M. Kim, Y. S. Kang, C. Ahn, S. Jang, M. Kim, Y.-E. Sung, S.J. Yoo and M. Choi, "Prism-patterned Nafion membrane for enhanced water transport in polymer electrolyte membrane fuel cell," Journal of Power Sources, vol. 317, pp. 19-24, 2016. https://doi.org/10.1016/j.jpowsour.2016.03.083
    [30] M. Aizawa and H. Gyoten, "Effect of micro-patterned membranes on the cathode performances for PEM fuel cells under low humidity," Journal of the Electrochemical Society, vol. 160, no. 4, pp. F417–F428, 2013. https://doi.org/10.1149/2.085304jes
    [31] T. Cao, H. Lin, L. Chen, Y. He, and W. Tao, "Numerical investigation of the coupled water and thermal management in PEM fuel cell," Applied Energy, vol. 112, pp. 1115-1125, 2013. https://doi.org/10.1016/j.apenergy.2013.02.031
    [32] T. F. Fuller and J. Newman, "Water and heat management model for solid-polymer-electrolyte fuel cells," Journal of the Electrochemical Society, vol. 140, no. 5, p. 1218, 1993.
    [33] M. Tomizawa, G. Inoue, K. Nagato, A. Tanaka, K. Park, and M. Nakao, "Heterogeneous pore-scale model analysis of micro-patterned PEMFC cathodes," Journal of Power Sources, vol. 556, p. 232507, 2023. https://doi.org/10.1016/j.jpowsour.2022.232507
    [34] K. Shang, C. Han, T. Jiang, and Z. Chen, "Numerical study of PEMFC heat and mass transfer characteristics based on roughness interface thermal resistance model," International Journal of Hydrogen Energy, vol. 48, no. 20, pp. 7460-7475, 2023. https://doi.org/10.1016/j.ijhydene.2022.11.201
    [35] Siemens, "STAR-CCM+ user guide." [Online]. Available: https://docs.sw.siemens.com/documentation/external/PL20201113103827399/en-US/userManual/userguide/html/index.html#page/STARCCMP%2FGUID-F6799832-2F7A-44BB-9CDA-0F32991EE48B.html%23
    [36] A. d’Adamo, M. Haslinger, G. Corda, J. Höflinger, S. Fontanesi, and T. Lauer, "Modelling methods and validation techniques for CFD simulations of PEM fuel cells," Processes, vol. 9, no. 4, p. 688, 2021. https://doi.org/10.3390/pr9040688
    [37] Wang,C.Y., “Fundamental models for fuel cell engineering,” Chem. Rev., 104, 4727–4765, 2004. https://doi.org/10.1021/cr020718s.
    [38] G. Corda, S. Fontanesi, and A. D’Adamo, "Methodology for PEMFC CFD simulation including the effect of porous parts compression," International Journal of Hydrogen Energy, vol. 47, no. 32, pp. 14658-14673, 2022. https://doi.org/10.1016/j.ijhydene.2022.02.201
    [39] T. E. Springer, T. A. Zawodzinski, and S. Gottesfeld, "Polymer electrolyte fuel cell model," Journal of The Electrochemical Society, vol. 138, no. 8, pp. 2334-2341, 1991. https://doi.org/10.1149/1.2085971/XML
    [40] A. d’Adamo, M. Riccardi, M. Borghi, and S. Fontanesi, "CFD modelling of a hydrogen/air PEM fuel cell with a serpentine gas distributor," Processes, vol. 9, no. 3, p. 564, 2021. https://doi.org/10.3390/pr9030564
    [41] M. Riccardi, A. d’Adamo, A. Vaini, M. Romagnoli, M. Borghi, S. Fontanesi, “Experimental Validation of a 3D-CFD Model of a PEM Fuel Cell,” E3S Web Conf., 197 05004, 2020. https://org/10.1051/e3sconf/202019705004
    [42] R. Kaiser, C.-Y. Ahn, Y.-H. Kim, and J.-C. Park, "Performance and mass transfer evaluation of PEM fuel cells with straight and wavy parallel flow channels of various wavelengths using CFD simulation," International Journal of Hydrogen Energy, vol. 51, Part D, pp. 1326-1344, 2024. https://doi.org/10.1016/j.ijhydene.2023.05.025
    [43] H. Wu, X. Li, and P. Berg, "On the modeling of water transport in polymer electrolyte membrane fuel cells," Electrochimica Acta, vol. 54, no. 27, pp. 6913-6927, 2009. https://doi.org/10.1016/j.electacta.2009.06.070

    QR CODE