研究生: |
莊家豪 Chuang, Chia-Hao |
---|---|
論文名稱: |
一維規定的平均曲率問題確切正解個數及分枝圖之研究 On exact multiplicity and bifurcation diagrams of positive solutions of a one-dimensional prescribed mean curvature problem |
指導教授: |
王信華
Wang, Shin-Hwa |
口試委員: |
王懷權
Wang, Hwai-chiuan 葉宗鑫 Yeh, Tzung-Shin |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 32 |
中文關鍵詞: | Prescribed mean curvature problem 、Bifurcation diagram 、Time map |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文共有五章︰第一章為簡介。第二章主要討論一維規定的平均曲率問題的正解個數。我們利用時間映射(time map)的方法來研究此一問題,我們得到數種不同的分枝曲線圖。第三章主要藉由數值模擬來研究此一問題,我們得到數種不同的分枝曲線圖,發現到有演化的現象。第四章證明需要用到的引理。第五章是理論證明。
[1] A. Ambrosetti, H. Brezis, G. Cerami, Combined e¤ects of concave and convex non-linearities in some elliptic problems, J. Funct. Anal. 122 (1994) 519–543.
[2] P. Amster, M.C. Mariani, The prescribed mean curvature equation for nonparametric surfaces, Nonlinear. Anal. 52 (2003) 1069-1077.
[3] C. Bereanu, J. Mawhin, Boundary-value problems with non-surjective -Laplacian and one-sided bounded nonlinearity, Adv. Di¤erential Equations 11 (2006) 35-60.
[4] D. Bonheure, P. Habets, F. Obersnel, P. Omari, Classical and non-classical positive solutions of a prescribed curvature equation with singularities, Rend. Istit.Mat. Univ. Trieste 39 (2007) 63-85.
[5] D. Bonheure, P. Habets, F. Obersnel, P. Omari, Classical and non-classical solutions
of a prescribed curvature equation, J. Di¤erential Equations 243 (2007) 208-237.
[6] M. Burns, M. Grinfeld, Steady state solutions of a bistable quasilinear equation with saturating ‡ux, University of Strathclyde Mathematics and Statistics Research Report, 4, 2010, pp. 1-12.
[7] P. Habets, P. Omari, Multiple positive solutions of a one-dimensional prescribed mean curvature problem, Commun. Contemp. Math. 9 (2007) 701-730.
[8] P. Korman, On uniqueness of positive solutions for a class of semilinear equations,
Discrete Contin. Dyn. Syst. 8 (2002) 865-871.
[9] P. Korman, Y. Li, Global solution curves for a class of quasilinear boundary value problem, Proc. Roy. Soc. Edinburgh Sect. A 140 (2010) 1197-1215.
[10] W. Li, Z. Liu, Exact number of solutions of a prescribed mean curvature equation,
J. Math. Anal. Appl. 367 (2010) 486-498.
[11] F. Obersnel, Classical and non-classical sign-changing solutions of a one-dimensional autonomous prescribed curvature equation, Adv. Nonlinear Stud. 7 (2007) 671-682.
[12] F. Obersnel, P. Omari, Positive solutions of the Dirichlet problem for the prescribed mean curvature equation, J. Di¤erential Equations 249 (2010) 1674-1725.
[13] H. Pan, One-dimensional prescribed mean curvature equation with exponential nonlinearity, Nonlinear Anal. 70 (2009) 999-1010.
[14] H. Pan, R. Xing, Time maps and exact multiplicity results for one-dimensional prescribed mean curvature equations, Nonlinear Anal. 74 (2011) 1234-1260.
[15] H. Pan, R. Xing, Time maps and exact multiplicity results for one-dimensional prescribed mean curvature equations, II, Nonlinear Anal. 74 (2011) 3751-3768.
[16] Sanchez, P. Ubilla, One-dimensional elliptic equation with concave and convex nonlinearities, Electron. J. Di¤. Eqns. 2000 (2000) 1-9.
[17] M. Tang, Exact multiplicity for semilinear elliptic Dirichlet problems involving concave and convex nonlinearities, Proc. Roy. Soc. Edinburgh Sect. A 133 (2003) 705-717.