簡易檢索 / 詳目顯示

研究生: 張蘊青
Yun-Ching Chang
論文名稱: 有機薄膜化分佈回饋型雷射之發光特性研究
A Study of the Emission Characteristics of Organic Thin-film Distributed Feedback Lasers
指導教授: 楊士禮
Sidney S. Yang
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 57
中文關鍵詞: 有機發光材料雷射分佈回饋
外文關鍵詞: organic, laser, distributed feedback
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究致力於探討與觀察光致激發有機薄膜雷射的發光特性,在材料的選擇上,常用於有機發光二體中的小分子發光材料DCJTB 擁有相當良好的發光特性,在研究的過程中,藉由自發性激發放大 (ASE) 實驗的量測與理論的分析,我們獲得了DCJTB 摻雜於兩種高分子材料PVK 和PS 中的增益特性。為了降低雷射的臨界激發能量與提升元件特性,採用反覆回饋式 (DFB) 的雷射共振腔結構也被引入了元件的設計,依據波耦合理論(coupled wave theory),我們模擬且設計了幾種不同形式的雷射共振腔,在元件製作方面,電子束微影蝕刻 (electron beam lithography) 術可以用來製作奈米等級的週期性光柵結構,而旋轉塗佈法可以有效率的週期性結構上鍍上有機發光薄膜。 由於共振腔優越的耦合效率與發光材料良好的增益特性,在光激發實驗中我們也成功地觀察到雷射放光的現象,此外在元件均分比 (duty cycle) 與光耦合效率 (coupling efficiency) 討論方面,理論分析結果也藉由實驗獲得完整的映證。


    The study are concentrated on the emission behaviors of an optically pumped composite thin-flm organic laser. As a high gain material, DCJTB reveals strongly ASE phenomenon that often rises under su±cient pumping energy and distance. The gain properties of the dye doped planar waveguide (DCJTB:PVK and DCJTB:PS) were therefore measured and analyzed via ASE theory. In order to suppress the undesired side modes and obtain the lower threshold gain, one-dimensional DFB structures were adopted. Based on the coupling wave theory, we simulated and designed various types of DFB laser caviities. The second order organic DFB lasers were fabricated with different duty cycles by electron beam lithography and spin-casting technique. With an efficient laser cavity and high gain material, lasing action were observed in the designed DFB integrated device.

    1 Introduction 2 Characteristics of conjugated molecules 2.1 pi-conjugated system 2.2 Excitation and emission of conjugated molecules 2.3 Properties of DCJTB and PVK3 Ampli‾ed Spontaneous Emission 3.1 Theory 3.1.1 Approximate equation for ASE phenomenon 3.1.2 Calculation of the waveguide mode 3.2 Experiment for measuring the gain coefficient 3.2.1 Sample preparation 3.2.2 Experimental setup 3.2.3 Measurement and analysis 4 Distributed Feedback Structure 4.1 Theory 4.1.1 Brag scattering 4.1.2 Coupled wave analysis 4.1.3 Coupling coefficient and reflection coefficient 4.1.4 Longitudinal modes in DFB lasers 4.1.5 Diffraction grating 4.2 Simulation and design 4.2.1 Effective refractive index in the corrugated structure 4.2.2 Calculation of the the coupling coefficient 4.2.3 Threshold gain analysis 5 Fabrication and Measurement 5.1 Fabrication of the organic DFB laser 5.1.1 Electron beam lithography 5.1.2 Spin casting process 5.2 Measurement setup and results 5.2.1 2nd order organic DFB laser with various duty cycles 5.2.2 Polarization and the beam shape 5.2.3 ASE in the DFB structure with duty cycle of 0.5 6 Conclusion and outlook

    [1] E. G. Brock, P. Czavinsky, E. Hormats, H. C. Nedderman, D. Stirpe, and F. Unterleitner, J. Chem. Phys. 35 (1961) 759.
    [2] S. G. Rautian and I.I. Sobel'mann, Opt. Spectry. 10 (1961) 65.
    [3] P. P. Sorokin and J. R. Lankard, IBM J. Res. Develop. 10 (1966) 162.
    [4] B. H. Soffer and B. B. McFarl, Appl. Phys. Lett. 10 (1967) 266.
    [5] H. Kogelnik and C. V. Shank, Appl. Phys. Lett. 18 (1971) 152.
    [6] C. W. Tang, S. A. VanSlyke, Appl. Phys. Lett. 51 (1987) 913.
    [7] R. Friend, J. Burroughes, D. Bradley, WO patent 90/13148 (1990).
    [8] M. Pope, H. Kallman, P. Magnante, J. Chem. Phys. 38 (1963) 2042.
    [9] N. Tessler, G. J. Denton, and R. H. Friend, Nature 382 (1996) 695.
    [10] V. G. Kozolov, V. Bulovic, P. E. Burrows, and S. R. Forrest, Nature 389 (1997) 362.
    [11] M. D. McGehee, M. A. D¶iaz-Garc¶ia, F. Hide, R. Gupta, E. K. Miller, D. Moses, Appl. Phys. Lerr. 72 (1998) 1536.
    [12] C. Kallinger, M. Hilmer, A. Haugeneder, M. Perner, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, K. MÄullen, A. Gombert, and V. Wittwer, Adv. Mater. 10 (1998) 920.
    [13] C. Bauer, H. Giessen, B. Schnabel, E. B. Kley, C. Schmitt, U. Scherf, and R. F. Mahrt, Adv. Mater. 13 (2001) 1161.
    [14] S. Riechel, C. Kallinger, U. Lemmer, J. Feldmann, A. Gombert, V. Wittwer, U. Scherf, Appl. Phys. Lett. 77 (2000) 2310.
    [15] J. Stehr, J. Crewett, F. Schindler, R. Sperling, G. Plessen, U. Lemmer, J. M. Lupton, T.A. Klar, J. Feldmann, A. W. Holleitner, M. Forster, and U. Scherf, Adv. Mater.
    15 (2003) 1726.
    [16] S. V. Frolov, M. Shkunov, Z. V. Vardeny, K. Yoshino, Phys. Rev. B 56 (1997) 4363.
    [17] William. T. Silfvast, Laser Fundamentals 2nd ed., Cambridge, 2004.
    [18] Andr¶e Moliton, Optoelectronics of Molecules and Polymers, Spriger, 2006.
    [19] C. H. Chen, J. Shi, K. P. Klubek, US patent 5908581 (1999).
    [20] J. Wilson and J. Hawkes, Optoelecronics 3rd ed., Prentice Hall, 1998.
    [21] P. W. Milonni, J. H. Eberly, Lasers, Wiley, 1988.
    [22] L. W. Casperson, J. Appl. Phys. 48 (1977) 256.
    [23] H. Kogelnik and C. V. Shank, J. Appl. Phys., 43 (1972) 2327.
    [24] W. Streifer, R. D. Burnham, and D. R. Scifres, IEEE J. Quant. Electron. 11 (1975)
    154.
    [25] H. Ghafouri-Shiraz and B. S. K. LO, Distributed Feedback Laser Diodes, Wiley, 1996.
    [26] A. Yariv, IEEE J. Quant. Electron. 31 (1973) 919.
    [27] W. Streifer, D. R. Scifres, and R. D. Burnham, IEEE J. Quant. Electron. 11 (1975) 867.
    [28] Shun Lien Chuang, Physics of Optoelectronic Devices, Wiley, 1995.
    [29] Eugene Hecht, Optics 4th ed., Addison Wesley, 2002.
    [30] Handbook of Chemistry and Physics 81st ed., CRC press, 2000.
    [31] R. D. Burnham, D. R. Scifres, and W. Streifer, IEEE J. Quant. Electron. 11 (1975)
    439.
    [32] G. A. Turnbull, P. Andrew, W. L. Barnes, and I. D. W. Samuel, Phy. Rev. Lett. B
    67 (2003) 165107.
    [33] G. Strangi, V. Barna, R. Caputo, A. De Luca, C. Versace, N. Scaramuzza, C. Umeton, and R. Bartolino, Phy. Rev. Lett. B 94 (2005) 063903.
    [34] V. Barna, S. Ferjani, A. De Luca, R. Caputo, N. Scaramuzza, C. Versace, and G. Strangia, Appl. Phy. Lett. 87, (2005) 221108.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE