研究生: |
宮啟元 KUNG,CHII-YUAN |
---|---|
論文名稱: |
雷德堡阻絕效應與低溫铷原子和雷德堡鉀原子的交互作用 Rydberg blockade effect and interaction between cold Rubidium and Rydberg Potassium |
指導教授: |
劉怡維
LIU, YI-WEI |
口試委員: |
王立邦
WANG, LI-BANG 陳應誠 Chen, Ying-Cheng |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 41 |
中文關鍵詞: | 雷德堡原子 、鉀原子 、銣原子 、磁光陷阱 |
外文關鍵詞: | Rydberg atom, Potassium atom, Rubidium atom, Magneto-optical trap |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
雷德堡原子因其巨大的原子半徑,而具有極強的偶極矩,這一特性導致兩顆雷德堡原子間會產生極強的偶極偶極交互作用,這使得將雷德堡原子作為量子閘的想法被不斷提出。除此之外,因為極強的的偶極偶極作用力,而使得雷德堡原子之間會產生一種名為雷德堡阻絕的現象,這也是它被選為量子位元候選者的原因之一。在這篇論文中,我們藉由產生鉀雷德堡原子時在銣鉀混合的磁光阱中造成的螢光損失,來研究雷德堡原子在異核原子間交互作用所造的躍遷率變化與耗損。我們量測六組不同的躍遷,並觀察到主量子數越高的雷德堡原子,所造成的螢光損失越多。同時我們發現相近的S和D軌域做比較,D軌域會造成更大的原子損失。我們藉由在磁光陷阱中銣原子和鉀原子的交互作用發現,兩者的數量會在磁光陷阱中呈現競爭關係。我們將鉀原子激發到雷德堡態,並觀察銣原子在不同雷德堡態的影響。在高量子數的D能態的雷德堡態鉀原子對磁光陷阱中的銣原子造成明顯的碰撞耗損。
Rydberg atoms process strong dipole moments owing to the large Bohr radius,which leads to strong dipoledipole interactions between two Rydberg atoms.Various theories or experiments have been processed to utilize Rydberg atom asquantum gate. Due to the dipoledipole interaction, the resulted Rydberg blockadeeffect,makes Rydberg atom as a good candidate for quantum qubit.In this thesis, we study various Rydberg transitions by observing the trap lossin a potassiumrubidium mixture MOT,while the Rydberg atoms are produced. Wemeasure the six pairs of the Rydberg transitions and found a higher loss rate whenthe principle quantum number is high. At the same time, we compare the D stateswith the nearby S states,and found that the D states cause higher trap loss. By theinteraction of two kind of atoms, the number of two species are in a competitiverelationship. To study the Rydberg interaction between two different speciesK andRb,we excite39Kto various Rydberg states and observe the influence of87Rbindifferent Rydberg state. We observed strong trap loss of87Rb,while the Rydberg39Katom was excited to higher D state(ie,88D).
[1]M. Saffman, T. G. Walker, and K. Mølmer, “Quantum information with rydberg atoms,”Reviews of Modern Physics, vol. 82, no. 3, p. 2313, 2010.
[2]L. Isenhower, E. Urban, X. Zhang, A. Gill, T. Henage, T. A. Johnson, T. Walker, andM. Saffman, “Demonstration of a neutral atom controllednot quantum gate,” Physicalreview letters, vol. 104, no. 1, p. 010503, 2010.
[3]H. Levine, A. Keesling, G. Semeghini, A. Omran, T. T. Wang, S. Ebadi, H. Bernien,M. Greiner, V. Vuletić, H. Pichler, et al., “Parallel implementation of highfidelity multiqubit gates with neutral atoms,” Physical Review Letters, vol. 123, no. 17, p. 170503,2019.
[4]Y. Zeng, P. Xu, X. He, Y. Liu, M. Liu, J. Wang, D. Papoular, G. Shlyapnikov, and M. Zhan,“Entangling two individual atoms of different isotopes via rydberg blockade,” PhysicalReview Letters, vol. 119, no. 16, p. 160502, 2017.
[5]J. S. Otto, N. Kjærgaard, and A. B. Deb, “Strong zerofield förster resonances in krbrydberg systems,” Physical Review Research, vol. 2, no. 3, p. 033474, 2020.
[6]J. Aman, B. J. DeSalvo, F. Dunning, T. Killian, S. Yoshida, and J. Burgdörfer, “Traplosses induced by nearresonant rydberg dressing of cold atomic gases,” Physical ReviewA, vol. 93, no. 4, p. 043425, 2016.
[7]D. Comparat and P. Pillet, “Dipole blockade in a cold rydberg atomic sample,” JOSA B,vol. 27, no. 6, pp. A208–A232, 2010.
[8]J. Weiner, V. S. Bagnato, S. Zilio, and P. S. Julienne, “Experiments and theory in cold andultracold collisions,” Reviews of Modern Physics, vol. 71, no. 1, p. 1, 1999.
[9]D. McKay, “Potassium 5p line data,” 2009.
[10]D. A. Steck, “Rubidium 87 d line data,” 2001.
[11]T. Gallagher, “Rydberg atoms,” Reports on Progress in Physics, vol. 51, no. 2, p. 143,1988.
[12]D. Jaksch, J. Cirac, P. Zoller, S. Rolston, R. Côté, and M. Lukin, “Fast quantum gates forneutral atoms,” Physical Review Letters, vol. 85, no. 10, p. 2208, 2000.
[13]P. Schauß, Highresolution imaging of ordering in Rydberg manybody systems. PhDthesis, lmu, 2015.40
[14]R. Heidemann, U. Raitzsch, V. Bendkowsky, B. Butscher, R. Löw, and T. Pfau, “Rydberg excitation of boseeinstein condensates,” Physical Review Letters, vol. 100, no. 3,p. 033601, 2008.
[15]A. Behrle, M. Koschorreck, and M. Köhl, “Isotope shift and hyperfine splitting of the 4s→ 5 p transition in potassium,” Physical Review A, vol. 83, no. 5, p. 052507, 2011.
[16]D. Gatti, R. Gotti, T. Sala, N. Coluccelli, M. Belmonte, M. Prevedelli, P. Laporta, andM. Marangoni, “Widebandwidth pound–drever–hall locking through a singlesidebandmodulator,” Optics letters, vol. 40, no. 22, pp. 5176–5179, 2015.
[17]R. Legaie, C. J. Picken, and J. D. Pritchard, “Subkilohertz excitation lasers for quantuminformation processing with rydberg atoms,” JOSA B, vol. 35, no. 4, pp. 892–898, 2018.
[18]E. D. Black, “An introduction to pound–drever–hall laser frequency stabilization,”
[19]J. Bai, J. Wang, J. He, and J. Wang, “Electronic sideband locking of a broadly tunable318.6 nm ultraviolet laser to an ultrastable optical cavity,” Journal of Optics, vol. 19,no. 4, p. 045501, 2017.
[20]P. Gregory, P. Molony, M. Köppinger, A. Kumar, Z. Ji, B. Lu, A. Marchant, and S. Cornish,“A simple, versatile laser system for the creation of ultracold ground state molecules,”New Journal of Physics, vol. 17, no. 5, p. 055006, 2015.
[21]G. Milani, B. Rauf, P. Barbieri, F. Bregolin, M. Pizzocaro, P. Thoumany, F. Levi, andD. Calonico, “Multiple wavelength stabilization on a single optical cavity using the offsetsideband locking technique,” Optics letters, vol. 42, no. 10, pp. 1970–1973, 2017.
[22]N. Arias, L. González, V. Abediyeh, and E. Gomez, “Frequency locking of multiple lasersto an optical cavity,” JOSA B, vol. 35, no. 10, pp. 2394–2398, 2018.
[23]M. Santos, P. Nussenzveig, L. Marcassa, K. Helmerson, J. Flemming, S. Zilio, and V. Bagnato, “Simultaneous trapping of two different atomic species in a vaporcell magnetooptical trap,” Physical Review A, vol. 52, no. 6, p. R4340, 1995.
[24]L. Marcassa, V. Bagnato, Y.j. Wang, C. Tsao, J. Weiner, O. Dulieu, Y. Band, and P. S.Julienne, “Collisional loss rate in a magnetooptical trap for sodium atoms: Lightintensitydependence,” Physical Review A, vol. 47, no. 6, p. R4563, 1993