簡易檢索 / 詳目顯示

研究生: 宮啟元
KUNG,CHII-YUAN
論文名稱: 雷德堡阻絕效應與低溫铷原子和雷德堡鉀原子的交互作用
Rydberg blockade effect and interaction between cold Rubidium and Rydberg Potassium
指導教授: 劉怡維
LIU, YI­-WEI
口試委員: 王立邦
WANG, LI-BANG
陳應誠
Chen, Ying-Cheng
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 41
中文關鍵詞: 雷德堡原子鉀原子銣原子磁光陷阱
外文關鍵詞: Rydberg atom, Potassium atom, Rubidium atom, Magneto-optical trap
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 雷德堡原子因其巨大的原子半徑,而具有極強的偶極矩,這一特性導致兩顆雷德堡原子間會產生極強的偶極­偶極交互作用,這使得將雷德堡原子作為量子閘的想法被不斷提出。除此之外,因為極強的的偶極­偶極作用力,而使得雷德堡原子之間會產生一種名為雷德堡阻絕的現象,這也是它被選為量子位元候選者的原因之一。在這篇論文中,我們藉由產生鉀雷德堡原子時在銣­鉀混合的磁光阱中造成的螢光損失,來研究雷德堡原子在異核原子間交互作用所造的躍遷率變化與耗損。我們量測六組不同的躍遷,並觀察到主量子數越高的雷德堡原子,所造成的螢光損失越多。同時我們發現相近的S和D軌域做比較,D軌域會造成更大的原子損失。我們藉由在磁光陷阱中銣原子和鉀原子的交互作用發現,兩者的數量會在磁光陷阱中呈現競爭關係。我們將鉀原子激發到雷德堡態,並觀察銣原子在不同雷德堡態的影響。在高量子數的D能態的雷德堡態鉀原子對磁光陷阱中的銣原子造成明顯的碰撞耗損。


    Rydberg atoms process strong dipole moments owing to the large Bohr ra­dius,which leads to strong dipole­dipole interactions between two Rydberg atoms.Various theories or experiments have been processed to utilize Rydberg atom asquantum gate. Due to the dipole­dipole interaction, the resulted Rydberg blockadeeffect,makes Rydberg atom as a good candidate for quantum qubit.In this thesis, we study various Rydberg transitions by observing the trap lossin a potassium­rubidium mixture MOT,while the Rydberg atoms are produced. Wemeasure the six pairs of the Rydberg transitions and found a higher loss rate whenthe principle quantum number is high. At the same time, we compare the D stateswith the nearby S states,and found that the D states cause higher trap loss. By theinteraction of two kind of atoms, the number of two species are in a competitiverelationship. To study the Rydberg interaction between two different species­K andRb,we excite39Kto various Rydberg states and observe the influence of87Rbindifferent Rydberg state. We observed strong trap loss of87Rb,while the Rydberg39Katom was excited to higher D state(ie,88D).

    1.大綱 1 1.1 動機 1 1.2 論文摘要 2 2.實驗理論 3 2.1 磁光陷阱 3 2.2 39K和87Rb的特性 4 2.2.1 39K 4 2.2.2 87Rb 4 2.3 雷德堡原子的特性 6 2.4 雷德堡原子與異核原子間的碰撞 8 3.實驗系統 11 3.1 雷德堡原子激發雷射 11 3.1.1 405nm 雷射系統 11 3.1.2 980nm 雷射系統 13 3.2 高細緻度光學共振腔 14 3.2.1共振腔結構 14 3.2.2光學架設 16 3.3 冷原子系統 17 3.3.1真空系統 17 3.3.2K磁光陷阱架設 17 3.3.3Rb磁光陷阱架設 18 4.雷德堡39K冷原子 21 4.1 雷德堡原子激發 21 4.1.1 Inverted ladder 21 4.2 雷德堡原子造成螢光損失 23 5.39K­-87Rb冷原子團的交互作用 30 5.1 實驗架設 30 5.2 雙磁光陷阱的交互作用 30 5.3 銣原子與雷德堡鉀原子的交互作用 32 6.結論和未來工作 39 6.1 結論 39 6.2未來工作 39 References 40

    [1]M. Saffman, T. G. Walker, and K. Mølmer, “Quantum information with rydberg atoms,”Reviews of Modern Physics, vol. 82, no. 3, p. 2313, 2010.
    [2]L. Isenhower, E. Urban, X. Zhang, A. Gill, T. Henage, T. A. Johnson, T. Walker, andM. Saffman, “Demonstration of a neutral atom controlled­not quantum gate,” Physicalreview letters, vol. 104, no. 1, p. 010503, 2010.
    [3]H. Levine, A. Keesling, G. Semeghini, A. Omran, T. T. Wang, S. Ebadi, H. Bernien,M. Greiner, V. Vuletić, H. Pichler, et al., “Parallel implementation of high­fidelity mul­tiqubit gates with neutral atoms,” Physical Review Letters, vol. 123, no. 17, p. 170503,2019.
    [4]Y. Zeng, P. Xu, X. He, Y. Liu, M. Liu, J. Wang, D. Papoular, G. Shlyapnikov, and M. Zhan,“Entangling two individual atoms of different isotopes via rydberg blockade,” PhysicalReview Letters, vol. 119, no. 16, p. 160502, 2017.
    [5]J. S. Otto, N. Kjærgaard, and A. B. Deb, “Strong zero­field förster resonances in k­rbrydberg systems,” Physical Review Research, vol. 2, no. 3, p. 033474, 2020.
    [6]J. Aman, B. J. DeSalvo, F. Dunning, T. Killian, S. Yoshida, and J. Burgdörfer, “Traplosses induced by near­resonant rydberg dressing of cold atomic gases,” Physical ReviewA, vol. 93, no. 4, p. 043425, 2016.
    [7]D. Comparat and P. Pillet, “Dipole blockade in a cold rydberg atomic sample,” JOSA B,vol. 27, no. 6, pp. A208–A232, 2010.
    [8]J. Weiner, V. S. Bagnato, S. Zilio, and P. S. Julienne, “Experiments and theory in cold andultracold collisions,” Reviews of Modern Physics, vol. 71, no. 1, p. 1, 1999.
    [9]D. McKay, “Potassium 5p line data,” 2009.
    [10]D. A. Steck, “Rubidium 87 d line data,” 2001.
    [11]T. Gallagher, “Rydberg atoms,” Reports on Progress in Physics, vol. 51, no. 2, p. 143,1988.
    [12]D. Jaksch, J. Cirac, P. Zoller, S. Rolston, R. Côté, and M. Lukin, “Fast quantum gates forneutral atoms,” Physical Review Letters, vol. 85, no. 10, p. 2208, 2000.
    [13]P. Schauß, High­resolution imaging of ordering in Rydberg many­body systems. PhDthesis, lmu, 2015.40
    [14]R. Heidemann, U. Raitzsch, V. Bendkowsky, B. Butscher, R. Löw, and T. Pfau, “Ryd­berg excitation of bose­einstein condensates,” Physical Review Letters, vol. 100, no. 3,p. 033601, 2008.
    [15]A. Behrle, M. Koschorreck, and M. Köhl, “Isotope shift and hyperfine splitting of the 4s→ 5 p transition in potassium,” Physical Review A, vol. 83, no. 5, p. 052507, 2011.
    [16]D. Gatti, R. Gotti, T. Sala, N. Coluccelli, M. Belmonte, M. Prevedelli, P. Laporta, andM. Marangoni, “Wide­bandwidth pound–drever–hall locking through a single­sidebandmodulator,” Optics letters, vol. 40, no. 22, pp. 5176–5179, 2015.
    [17]R. Legaie, C. J. Picken, and J. D. Pritchard, “Sub­kilohertz excitation lasers for quantuminformation processing with rydberg atoms,” JOSA B, vol. 35, no. 4, pp. 892–898, 2018.
    [18]E. D. Black, “An introduction to pound–drever–hall laser frequency stabilization,”
    [19]J. Bai, J. Wang, J. He, and J. Wang, “Electronic sideband locking of a broadly tunable318.6 nm ultraviolet laser to an ultra­stable optical cavity,” Journal of Optics, vol. 19,no. 4, p. 045501, 2017.
    [20]P. Gregory, P. Molony, M. Köppinger, A. Kumar, Z. Ji, B. Lu, A. Marchant, and S. Cornish,“A simple, versatile laser system for the creation of ultracold ground state molecules,”New Journal of Physics, vol. 17, no. 5, p. 055006, 2015.
    [21]G. Milani, B. Rauf, P. Barbieri, F. Bregolin, M. Pizzocaro, P. Thoumany, F. Levi, andD. Calonico, “Multiple wavelength stabilization on a single optical cavity using the offsetsideband locking technique,” Optics letters, vol. 42, no. 10, pp. 1970–1973, 2017.
    [22]N. Arias, L. González, V. Abediyeh, and E. Gomez, “Frequency locking of multiple lasersto an optical cavity,” JOSA B, vol. 35, no. 10, pp. 2394–2398, 2018.
    [23]M. Santos, P. Nussenzveig, L. Marcassa, K. Helmerson, J. Flemming, S. Zilio, and V. Bag­nato, “Simultaneous trapping of two different atomic species in a vapor­cell magneto­optical trap,” Physical Review A, vol. 52, no. 6, p. R4340, 1995.
    [24]L. Marcassa, V. Bagnato, Y.­j. Wang, C. Tsao, J. Weiner, O. Dulieu, Y. Band, and P. S.Julienne, “Collisional loss rate in a magneto­optical trap for sodium atoms: Light­intensitydependence,” Physical Review A, vol. 47, no. 6, p. R4563, 1993

    QR CODE