簡易檢索 / 詳目顯示

研究生: 邱淑芬
Chiu, Sue-Fen
論文名稱: 胃幽門桿菌HP0860基因缺失對脂多醣生合成的影響
Effects of HP0860 knockout mutations on lipopolysaccharide biosynthesis in Helicobacter pylori
指導教授: 高茂傑
Kao, Mou-Chieh
口試委員: 高茂傑
Kao, Mou-Chieh
張晃猷
Chang, Hwan-You
彭慧玲
Peng, Hwei-Ling
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 56
中文關鍵詞: 胃幽門螺旋桿菌脂多醣HP0860
外文關鍵詞: Lipopolysaccharwide
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 胃幽門桿菌為一螺旋狀的革蘭氏陰性微耗氧菌,主要寄居在胃黏膜的上皮細胞,是一個引起胃潰瘍、胃癌與胃黏膜相關淋巴癌的危險因子。在眾多胃幽門桿菌的致病因子中,脂多醣 (lipopolysaccharide)是革蘭氏陰性菌細胞膜主要成分之一,除了維持外膜構造上的穩定外而且會誘發宿主產生強烈免疫反應。脂多醣在結構上分成三個部分包含脂質A (lipid A) 、核寡糖 (core oligosaccharide) 和O抗原 (O-antigen)。研究顯示在大腸桿菌中,當脂多醣內核寡糖的主要成分ADP-L-D-heptose若消失,會造成脂多醣的嚴重缺損並降低菌株的致病力。而根據生物資訊比對結果,胃幽門桿菌的 HP0860基因被預測可轉譯成D-D-Heptose-1,7-bisphosphate phosphatase (GmhB),為參與ADP-L-D-heptose生合成途徑所需酵素之一。因此,本篇論文主要在於分析HP0860基因產物的特性,進而探討HP0860在脂多醣內核寡糖生合成所扮演的角色。實驗結果顯示HP0860在自然環境下可能以單體存在,而酵素活性測定也證實HP0860具有將D-glycero-D-manno-heptose-1,7-bisphosphate 轉化為D-glycero-D-manno-heptose
    -1-phosphate 的催化活性 (kcat/Km = 2188 mM-1s-1)。另外,我們建構了HP0860基因缺失的菌株,並比較其與正常野生菌株相關生理特徵之差異。結果顯示HP0860基因缺失的菌株除了產生具有缺陷的脂多醣結構,同時也生成了部份完整的脂多醣結構,我們推測在胃幽門桿菌中可能存在具有和HP0860功能相似的蛋白補償HP0860基因的缺失。此外,當HP0860基因缺失時,菌體的生長速率、貼附能力以及受感染的胃腺癌細胞(AGS cells) 呈現典型蜂鳥狀型態 (hummingbird) 的現象皆受到影響。值得注意的是,我們也發現HP0860基因缺失所造成的脂多醣結構改變,會間接影響外膜囊泡 (outer membrane vesicle) 內蛋白質的組成成分。綜合以上的結果,本研究除了分析HP0860蛋白的特性及功能,同時也證實HP0860確實參與胃幽門桿菌脂多醣內核寡糖生合成,對未來治療及防範幽門桿菌感染的策略提供新的概念。


    Helicobacter pylori, a Gram-negative, microaerophilic spiral bacterium that colonizes the mucosa of human stomach, has been considered a risk factor for human gastric diseases. Lipopolysaccharwide (LPS), one of the virulence factors in H. pylori, is composed of lipid A, core oligosaccharide and O-antigen polysaccharide, and is thought to be toxic with potent immunomodulating and immunostimulating properties. In the current study, the HP0860 gene from H. pylori, which was predicted to encode the D-D-Heptose-1,7-bisphosphate phosphatase (GmhB) involved in the synthesis of ADP-L-D-heptose for the assembly of LPS inner core, was cloned and characterized. We reported HP0860 protein under native conditions is monomeric in solution, and confirmed HP0860 functions as a phosphatase by converting D-glycero-D-manno
    -heptose-1,7-bisphosphate into D-glycero-D-manno-heptose-1-phosphate (kcat/Km = 2188 mM-1s-1). Subsequently, we constructed an HP0860 knockout mutant and examined its phenotypic properties. The HP0860 knockout mutant contained both mature and immature forms of LPS structure, suggesting another protein present in the HP0860 knockout mutant might be able to partially compensate for the loss of HP0860 activity. In addition, we also revealed that the HP0860 knockout mutant exhibited a decreased growth rate, less classic hummingbird phenotype showing by the infected AGS cells and a lower adherence on H. pylori-infected AGS cells, suggesting that H. pylori lacking HP0860 appeared to be less virulent. Furthermore, we provided the evidence that mutation of the genes involved in LPS biosynthesis altered the sorting of cargo proteins into outer membrane vesicles (OMVs). In conclusion, the findings in this report confirmed the involvement of HP0860 in the LPS inner core biosynthesis and added a new understanding for future developing novel antimicrobial agents against H. pylori infection.

    中文摘要 I Abstract II 致謝 III Table of contents IV List of tables VI List of figures VII Chapter 1 Introduction 1 Chapter 2 Materials and methods 8 2.1 Materials 8 2.2 Bacterial strains, plasmids and cell culture 8 2.3 Molecular cloning of HP0860 gene 9 2.4 HP0860 protein expression and purification 10 2.5 Protein SDS–PAGE and immuno-blotting analysis 10 2.6 Determination of the oligomeric state of HP0860 protein 11 2.7 Circular dichroism analysis of the secondary structure of HP0860 protein 12 2.8 Kinetic analysis of HP0860 protein 12 2.9 Construction of HP0860 knockout mutant and complementary mutant 14 2.10 Growth curve analysis of H. pylori 16 2.11 Isolation and phenotypic analysis of H. pylori LPS 16 2.12 The analysis of morphological changes on H. pylori-infected AGS cells 17 2.13 Imaging of H. pylori-infected AGS cells with scanning electron microscopy 18 2.14 Isolation and analysis of H. pylori outer membrane vesicles (OMVs) 19 Chapter 3 Results 20 3.1 Sequence analysis of HP0860 protein in H. pylori 26695 20 3.2 The cloning of HP0860 gene and expression of HP0860 21 3.3 The oligomeric state of HP0860 protein in solution 22 3.4 Circular dichroism analysis of the secondary structure of HP0860 protein 22 3.5 Steady state kinetic analysis of HP0860 23 3.6 Confirmation of HP0860 knockout mutant and complementary mutant 24 3.7 Effects of HP0860 mutations on H. pylori growth curve 25 3.8 Effects of HP0860 mutations on LPS expression 25 3.9 Effects of HP0860 mutations on protein contents of outer membrane vesicles 26 3.10 Effects of HP0860 mutations on AGS cells morphological changes 27 3.11 Morphological analysis of H. pylori attached to AGS cells using SEM 27 Chapter 4 Discussions 29 Chapter 5 References 33 Table 39 Figure 43

    1. A. Nomura, Helicobacter pylori infection and the risk for duodenal and gastric ulceration, Ann Intern Med. 120 (1994) 977–81.
    2. J. W. Olson, R. J. Maier, Molecular hydrogen as an energy source for Helicobacter pylori, Science 298 (2002) 1788–1790.
    3. J. R. Warren, B. Marshall, Unidentified curved bacilli on gastric epithelium in active chronic gastritis, J. Lancet. 1(1983) 1273–1275.
    4. W. L. Peterson, Helicobacter pylori and Peptic Ulcer Disease, N. Engl. J. Med. 324 (1991) 1043–1048.
    5. R. Hejazi, M. Amiji, Stomach-specific anti-H. pylori therapy. I: preparation and characterization of tetracyline-loaded chitosan microspheres, Int. J. Pharm. 235 (2002) 87–94.
    6. I. Taneike, Y. Tamura, T. Shimizu, Y. Yamashiro, T. Yamamoto, Helicobacter pylori intrafamilial infections: change in source of infection of a child from father to mother after eradication therapy, Clin. Diagn. Lab. Immunol. 8 (2001) 731–739.
    7. R.W. Van der Hulst, J. J. Keller, E. A. Rauws, G.N. Tytgat, Treatment of Helicobacter pylori infection: a review of the world literature, Helicobacter. 1(1996) 6–19.
    8. S. Shah, R. Qaqish, V. Patel, Evaluation of the factors influencing stomach-specific delivery of antibacterial agents for Helicobacter pylori infection, Journal of Pharmacy and Pharmacology 51(1999) 667–672.
    9. Jean-F. Tomb, Owen White, Anthony R. Kerlavage, The complete genome sequence of the gastric pathogen Helicobacter pylori, NATURE 388 (1997) 539–547.
    10. R. A. Alm, Lo-See L. Ling, D. T. Moir, Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori, Nature 397 (1999) 176–180.
    11. D. O. Jung, Kling-Backhed Helene, M. Giannakis, The complete genome sequence of a chronic atrophic gastritis Helicobacter pylori strain: Evolution during disease progression, PNAS 103 (2006) 9999–10004.
    12. J.C. Atherton, R.M. Peek, Jr., K.T. Tham, T.L. Cover, M.J. Blaser, Clinical and pathological importance of heterogeneity in vacA, the vacuolating cytotoxin gene of Helicobacter pylori, Gastroenterology 112 (1997) 92-99
    13. M.J. Blaser, Not all Helicobacter pylori strains are created equal: should all be eliminated, Lancet. 349 (1997)1020-1022.
    14. S.L. Hazell, A. Lee, L. Brady, W. Hennessy. Campylobacter pyloridis and Gastritis: Association with Intercellular Spaces and Adaptation to an Environment of Mucus as Important Factors in Colonization of the Gastric Epithelium, J. Infect Dis. 153 (1986) 658-663.
    15. E. Padan, D. Zilberstein, S. Schuldiner, pH homeostasis in bacteria, Biochim Biophys Acta. 650 (1981) 151–166.
    16. S. Schreiber, M. Konradt, C. Groll, P. Scheid, The spatial orientation of Helicobacter pylori in the gastric mucus, PNAS 101 (2004) 5024–5029.
    17. K. A. Eaton, C. L. Brooks, D. R. Morgan, S. Krakowka, Essential Role of Urease in Pathogenesis of Gastritis Induced by Helicobacter pylori in Gnotobiotic Piglets, Infection and Immunity 59 (1991) 2470-2475.
    18. M. Clyen, A. Labigne, B. Drumn, Helicobacter pylori Requires an Acidic Environment To Survive in the Presence of Urea, Infection and Immunity 63 (1995) 1669–1673.
    19. D. R. Scott, The role of internal urease in acid resistance of Helicobacter pylori, Gastroenterology 114 (1998) 58–70.
    20. R. M. Peek Jr., J. E. Crabtree, Helicobacter infection and gastric neoplasia, Journal of Pathology 208 (2006) 233–248.
    21. J. C. Atherton, M. J. Blasé, Coadaptation of Helicobacter pylori and humans: ancient history, modern implications, J. Clin. Invest. 119 (2009) 2475–2487.
    22. M. R. Amieva, E. M. El-omar, Host-Bacterial Interactions in Helicobacter pylori Infection, Gastroenterology 134 (2008) 306–323.
    23. M. Asahi, T. Azuma, S. Ito, Y. Ito, H. Suto, Y. Nagai, Helicobacter pylori CagA protein can be tyrosine phosphorylated in gastric epithelial cells, J. Exp. Med. 191 (2000) 593–602.
    24. S. Backert, E. Ziska, V. Brinkmann, U. Zimny-Arndt, Translocation of the Helicobacter pylori CagA protein in gastric epithelial cells by a type IV secretion apparatus, Cell. Microbiol. 2 (2000) 155–164.
    25. M. Hatakeyama, Oncogenic mechanisms of the Helicobacter pylori CagA protein, Nat. Rev. Cancer 4 (2004) 688–694.
    26. S. Odenbreit, J. Puls, B. Sedlmaier, E. Gerland, W. Fischer, R. Haas. Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion, Science 287 (2000) 1497–1500.
    27. M. Stein, R. Rappuoli, A. Covacci, Tyrosine phosphorylation of the Helicobacter pylori CagA antigen after cag-driven host cell translocation, Proc. Natl. Acad. Sci. 97 (2000) 1263–1268.
    28. N. Tegtmeyer, S. Wessler, S.Backert, Role of the cag-pathogenicity island encoded type IV secretion system in Helicobacter pylori pathogenesis, FEBS Journal 278 (2011) 1190–1202.
    29. J. G. Kusters, A. H. M. van Vliet, E. J. Kuipers, Pathogenesis of Helicobacter pylori Infection, Clinical microbiology reviews 19 (2006) 449–490.
    30. E.T. Rietschel, T. Kirikae, F. U. Schade et al., Bacterial endotoxin: molecular relationships of structure to activity and function, FASEB J. 8 (1994) 217-225.
    31. C.R. Raetz, C. Whitfield, Lipopolysaccharide endotoxins, Annu. Rev. Biochem. 71 (2002) 635–700.
    32. I. Hug, M. F. Feldman, Analogies and homologies in lipopolysaccharide and glycoprotein biosynthesis in bacteria, Glycobiology 21 (2011) 138–151.
    33. A.P. Moran. Lipopolysaccharide in bacterial chronic infection: Insights from helicobacter pylori lipopolysaccharide and lipid A, International Journal of Medical Microbiology: IJMM. 297 (2007) 307-319.
    34. H. Nikaido, Molecular basis of bacterial outer membrane permeability, Microbiology and Molecular Biology Reviews: MMBR, 67(2003) 593-656.
    35. A.P. Moran, I. M. Helander, T. U. Kosunen, Compositional analysis of helicobacter pylori rough-form lipopolysaccharides, Journal of Bacteriology
    174 (1992) 1370-1377.
    36. E. J. Walsh, A. P. Moran, Influence of medium composition on the growth and antigen expression of helicobacter pylori, Journal of Applied Microbiology 83 (1997) 67-75.
    37. N. J. Edwards, M. A. Monteiro et al., Lewis X structures in the O antigen side-chain promote adhesion of helicobacter pylori to the gastric epithelium, Molecular Microbiology, 35 (2000) 1530-1539.
    38. B. J. Appelmelk, I. Simoons-Smit, R. Negrini, A. P. Moran, G. O. Aspinall, J. G. Forte, et al., Potential role of molecular mimicry between helicobacter pylori lipopolysaccharide and host lewis blood group antigens in autoimmunity. Infection and Immunity, 64 (1996) 2031-2040.
    39. A. P. Moran, Y. A. Knirel, S. N. Senchenkova, G. Widmalm, Phenotypic variation in molecular mimicry between helicobacter pylori lipopolysaccharides and human gastric epithelial cell surface glycoforms. acid-induced phase variation in lewis(x) and lewis(y) expression by H. pylori lipopolysaccharides. The Journal of Biological Chemistry, 277 (2002) 5785-5795.
    40. T. Kontrohr, Isolation of Adenosine 5'-Diphosphate-D-glycero-D- mannoheptose, The journal of biological chemistry, 256 (1981) 7715-7718.
    41. G. C. Shih, C. M. Kahler, R. W. Carlson, M. M. Rahman, D. S. Stephens, gmhX, a novel gene required for theincorporation of L-glycero-D-manno-heptose into lipooligosaccharide in Neisseria meningitides, Microbiology, 147 (2001) 2367–2377.
    42. M.A. Valvano, P. Messner, P. Kosma, Novel pathways for biosynthesis of nucleotide-activated glycero-manno-heptose precursors of bacterial glycoproteins and cell surface polysaccharides, Microbiology 148 (2002) 1979–1989.
    43. B. Kneidinger, C. Marolda, M. Graninger, A. Zamyatina, F. McArthur, P. Kosma, M. A. Valvano, P. Messner, Biosynthesis Pathway of ADP-L -glycero-β-D-manno-Heptose in Escherichia coli, Journal of Bacteriology 184 (2002) 363–369.
    44. M. Brilli, R. Fani, Molecular evolution of hisB genes, J. Mol. Evol. 58 (2004) 225–237.
    45. A. M. Burroughs, K.N. Allen, D. D. Mariano, L. Aravind, Evolutionary Genomics of the HAD Superfamily: Understanding the Structural Adaptations and Catalytic Diversity in a Superfamily of Phosphoesterases and Allied Enzymes, J. Mol. Biol. 361 (2006) 1003 – 1034.
    46. H. H. Nguyen, Liang bing Wang, Hua Huang et al., Structural Determinants of Substrate Recognition in the HAD Superfamily Member D-glycero-D-manno-Heptose-1,7-bisphosphate Phosphatase (GmhB), Biochemistry 49 (2010) 1082–1092.
    47. R. M. Horton, In vitro recombination and mutagenesis of DNA. SOE-ing together tailor-made genes, Methods Mol. Biol. 67 (1997) 141–149.
    48. R. M. Horton, S. N. Ho, J. K. Pullen, H. D. Hunt, Z. Cai, L. R. Pease, Gene splicing by overlap extension, Methods Enzymol. 217(1993) 270–279.
    49. B. Lefebvre, P. Formstecher, P. Lefebvre, Improvement of the gene splicing overlap (SOE) method. BioTechniques 19 (1995) 186–188.
    50. R. Haas, T. F. Meyer, J. P. van Putten, A flagellated mutants of helicobacter pylori generated by genetic transformation of naturally competent strains using transposon shuttle mutagenesis, Molecular Microbiology 8 (1993) 753-760.
    51. M. M. Gerrits, E. J. van der Wouden, D. A. Bax, et al., Role of the rdxA and frxA genes in oxygen-dependent metronidazole resistance of helicobacter pylori, Journal of Medical Microbiology 53 (2004) 1123-1128.
    52. A. Fomsgaard, M. A. Freudenberg, C. galansos, Modification of the Silver Staining Technique To Detect Lipopolysaccharide in Polyacrylamide Gels, Journal of clinical microbiology 28 (1990) 2627-2631.
    53. C. L. Marolda, P. Lahiry, E. Vines, S. Saldias, M. A. Valvano, Micromethods for the characterization of lipid A-core and O-antigen lipopolysaccharide. Methods in Molecular Biology, 347 (2006) 237-252.
    54. C. M. Tsai, C. E. Frasch, A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels, Analytical Biochemistry 119 (1982) 115-119.
    55. M. Rohde, J. Püls, R. Buhrdorf, W. Fischer, R.Haas, A novel sheathed surface organelle of the Helicobacter pylori cag type IV secretion system, Molecular Microbiology 49 (2003) 219–234.
    56. S. N. Wai, A. Takade, K. Amako, The release of outer membrane vesicles from the strains of enterotoxigenic Escherichia coli, Microbiol Immunol. 39 (1995) 451-456.
    57. Y. Wang, D.E. Taylor, Chloramphenicol resistance in Campylobacter coli: nucleotide sequence, expression, and cloning vector construction, Gene 94 (1990) 23–28.
    58. M. Rangarajan, J. Aduse-Opoku, N. Paramonov, A. Hashim, N. Bostanci, Identification of a second lipopolysaccharide in Porphyromonas gingivalis W50, J. Bacteriol. 190 (2008) 2920 – 2932.
    59. T.J. Beveridge, Structures of gram-negative cell walls and their derived membrane vesicles, J. Bacteriol. 181 (1999) 4725– 4733.
    60. E.D. Segal, J. Cha, J. Lo, S. Falkow, L. S. Tompkins, Altered states: involvement of phosphorylated CagA in the induction of host cellular growth changes by Helicobacter pylori, Proc. Natl. Acad. Sci. USA 96 (1999) 14559–14564.
    61. S. Backert, S. Moese, S. Selbach, V. Brinkmann, T. F. Meyer, Phosphorylation of tyrosine 972 of the Helicobacter pylori CagA protein is essential for induction of a scattering phenotype in gastric epithelial cells, Mol. Microbiol. 42 (2001) 631–644.
    62. P.C. Chang, C.J. Wang, C.K. You, M.C. Kao, Effects of a HP0859 (rfaD) knockout mutation on lipopolysaccharide structure of Helicobacter pylori 26695 and the bacterial adhesion on AGS cells, Biochem. Biophys. Res. Commun. 405 (2011) 497–502.
    63. P. L. Taylor, S. Sugiman-Marangos, K. Zhang, M. A. Valvano, Structural and Kinetic Characterization of the LPS Biosynthetic Enzyme D-α, β-D -Heptose-1,7-bisphosphate Phosphatase (GmhB) from Escherichia coli, Biochemistry 49 (2010) 1033–1041.
    64. R. Fani, M. Brilli, M. Fondi, P. Lió, The role of gene fusions in the evolution of metabolic pathways: the histidine biosynthesis case, MC Evolutionary Biology 7 (2007).
    65. H. Parker, J. I. Keenan, Composition and function of Helicobacter pylori outer membrane vesicles, Microbes and Infection, 14 (2012) 9 –16.
    66. A. Kulp, M.J. Kuehn, Biological functions and biogenesis of secreted bacterial outer membrane vesicles, Annu. Rev. Microbiol. 64 (2010) 163– 184.
    67. A. J. McBroom, M.J. Kuehn, Release of outer membrane vesicles by gram-negative bacteria is a novel envelope stress response, Mol. Microbiol. 63 (2007) 545 –558.
    68. M. F. Haurat, J. Aduse-Opoku, M.Rangarajan, L. Dorobantu, Selective Sorting of Cargo Proteins into Bacterial Membrane Vesicles, The journal of biological chemistry 286 (2011) 269–1276.
    69. L. Wang, H. Huang, H. H. Nguyen et al., Divergence of Biochemical Function in the HAD Superfamily: D -glycero- D -manno-Heptose-1,7-bisphosphate Phosphatase (GmhB), Biochemistry 49 (2010) 1072–1081.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE