簡易檢索 / 詳目顯示

研究生: 張崇原
Chung-Yuan Chang
論文名稱: 金屬(鋁)/鐵電薄膜(鋯鈦酸鉛)/絕緣層(氧化鏑)/半導體 電容與場效電晶體之製作及電性分析
The fabrication and electrical properties of metal(Al)/ferroelectric (Pb(Zr0.6Ti0.4)O3 )/insulator(Dy2O3)/semiconductor Capacitors and field-effect transistors
指導教授: 李雅明
Joseph Ya-Min Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 86
中文關鍵詞: 鐵電薄膜
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本次的實驗中我們成功的製作出了金屬(Al)/鐵電薄膜(PZT)/絕緣體(Dy2O3)/半導體(p-type)結構的電容器及電晶體,並對其電性作一些基本量測分析。在電晶體電性的量測方面,我們所得到的臨界電壓為0.7 V,次臨界斜率可達到95mV/decade以及電子遷移率為58 cm2/V-sec,已顯現出本電晶體的一些基本特性。本次所製作出的電晶體得到的次臨界斜率值還算小,表示著電晶體有很明顯的開關能力,但是在電子遷移率過低的問題方面,我們需要再做更進一步的分析探討及改進以讓電晶體的特性更加完好。
    在電晶體的記憶體效應方面,由IDS-VGS特性曲線的量測結果分析,我們可發現IDS-VGS曲線走向在掃瞄振幅電壓小於8 V時記憶窗有隨著掃瞄振幅變大而增加的趨勢且為逆時針走向,這表示在當外加電壓小於8V時,IDS-VGS曲線走向是由鐵電極化效應在主導;當外加電壓大於8 V時,電荷注入的影響大於鐵電極化,因此IDS-VGS曲線走向是由電荷注入在主導。同時,在鐵電極化的主導下,記憶窗於掃瞄電壓振幅8 V時最大,為0.79 V。另外,我們量測電容器記憶窗也得到相近之結果,符合公式 □Vwindow=2dfEc。我們也經由IDS-VDS的量測得到MFIS結構電晶體的寫入邏輯“1”和邏輯“0”所得的Ion及Ioff相差為20倍,另外關於記憶保持力部份也得到不錯的結果。


    第一章 緒論 1.1 動態隨機存取記憶體的簡介……………………………1 1.2 鐵電材料的特徵…………………………………………2 1.3應用於鋯鈦酸鉛的鐵電記憶體……………..……………2 1.4 鐵電材料於FRAM的發展現況…………………………3 1.5 MFIS結構的應用…………………………………………4 第二章 鋯鈦酸鉛(PZT)的理論 2.1 鐵電材料的結構…………………………………………5 2.2 鐵電材料的電滯曲線……………………………………6 2.3 鐵電材料的開關理論……………………………………7 2.4 鐵電薄膜的電性………………………………………….8 2.5 鐵電材料的可靠度……………………………………9 第三章 金屬/鐵電薄膜PZT/絕緣體/半導體 電晶體及電容的製備 3.1 設備與製程…………………………………..…………11 3.2射頻磁控濺鍍法的簡介………………………...………11 3.3 Dy2O3薄膜電容器的製備………………………….……12 3.3.1基板及絕緣層的製作…………………...…………..12 3.3.2 Dy2O3薄膜的成長…………………………………12 3.3.3 PZT 薄膜的製作………………...…………………13 3.3.4上下電極的製作………………….…………………13 3.4 MFIS薄膜電晶體的製備………………………………14 3.5 蝕刻上遭遇到的問題…………………………………18 3.6製作問題分析………………………………………..…19 3.7 注意事項………………………………………………19 第四章 金屬(Al)╱鐵電薄膜(PZT)╱絕緣層(Dy2O3)╱ 半導體 結構的基本物性分析 4.1 X-ray 繞射 (XRD)分析………………………………....20 4.2 二次離子縱深質譜儀 (SIMS)分析…………………….20 第五章 金屬(Al)╱鐵電薄膜(PZT)╱絕緣層(Dy2O3) ╱半導體 電容器的特性 5.1 四種氧化層電荷對氧化層薄膜的貢獻……………….22 5.2 電容-電壓(C-V)曲線的基本量測………………….....23 5.3 C-V曲線飄移與走向的探討…………………………….25 5.4 Au/PZT/Dy2O3/Si結構之C-V特性……………………....28 5.5矯頑電場與C-V記憶窗的比較………………………….29 第六章 金屬(Al)╱鐵電薄膜(PZT)╱絕緣層(Dy2O3)╱ 半導體 場效電晶體的特性量測 6.1 電晶體的基本電性分析………………………………32 6.1.1 IDS-VDS Curve的特性…………………………….…32 6.1.2 臨界電壓(Threshold Voltage VT)…………………33 6.1.3 次臨界斜率(Sub-threshold Slope)……………...…34 6.1.4 遷移率的探討(Mobility)……………………….…35 6.2 電晶體的記憶體效應…………………………………38 6.2.1 IDS-VGS 曲線飄移與走向的探討………….…….…38 6.2.2 ION 與 IOFF 電流…………………….………..………43 6.2.3 記憶保持力………………………………………...43 第七章 結論

    [1] 鄭晃忠, “高密度鐵電性記憶體之趨勢發展”, 電子月刊, 第五卷第五期, p.137. 1996
    [2] 賴明駿, “極大型積體電路之鐵電材料”, 電子月刊, 第五卷第六期, p. 94. 1996
    [3] B. W. Shen., G. Chung, I. C. Chen, D. J. Coleman, Jr., P. S. Ying, R. McKee, M. Yashiro, C. W. Teng, “Scalability of a Trench Capacitor Cell for 64 Mbit DRAM,” in IEDM Tech. Dig., pp. 27, 1989.
    [4] 何彬明, “FeRAM產品化的崎嶇道路”, 電子月刊, 第五卷第三期, p.166. 1996
    [5] T. Eimori, and B. Desu, “A newly designed planar stacked capacitor cell with high dielectric constant film for 256Mbit DRAM”, IEEE IEDM, pp. 631-634, 1993.
    [6] T. Sumi, and P. D. Maniar, “Ferroelectric nonvolatile memory technology and its applications”, Jpn. J. Appl. Phys., Vol. 35, No. 2B, pp. 1516-1520, 1996.
    [7] S. L. Miller, and P. J. McWhorter, “Physics of the ferroelectric nonvolatile memory field effect transistor”, J. Appl. Phys., vol. 72, Issue 12, pp. 5999-6010, 1992.
    [8] R. Moazzami, C. Hu, W.H. Shepherd, “A ferroelectric DRAM cell for high-density NVRAM’s”, IEEE, ELECTRON DEVICE LETT., vol.11, p. 454 , 1990.
    [9] 李雅明, 吳世全, 陳宏名 “鐵電記憶元件”, 電子月刊, 9月號, 1996.
    [10] S. Sinharoy, H. Buhay, D. R. Lampe, M. H. Francombe, “Integration of ferroelectric thin films into nonvolatile memories”, Journal of Vacuum Science & Technology A., vol. 10, Issue 4, pp. 1554-1561, 1992.
    [11] T. Nakamur, and Y. Fujimor, “Fabrication Technology of Ferroelectric Memories”, Jpn. J. Appl. Phys., vol. 37, part. 1, N0. 3B, pp. 1325-1327, 1998.
    [12] K. H. Kuo, and M. J. Sun , “Metal-Ferroelectric-Semiconductor (MFS) FET’s Using LiNbO3/Si (100) Structures for Nonvolatile Memory Application”, IEEE Electron Device Lett., vol. 19, Issue. 6, pp. 204-206, 1998.
    [13] K. Sugibuchi, Y. Kurogi, and N. Endo, “Ferroelectric field-effect memory device using Bi4Ti3O12 film”, J. Appl. Phys., vol.46, Issue 7, pp. 2877-2881, 1975.
    [14] N. A. Basit, and H. K. Kim, “Growth of highly oriented Pb(Zr,Ti)O3 films on MgO-buffered oxidized Si Substrates and its application to ferroelectric nonvolatile memory field-effect transistors “, Appl. Phys. Lett., vol. 73, Issue 26, pp. 3941-3943, 1998.
    [15] H. N. Lee, M. H. Lim, and Y. T. Kim, “Characteristics of Metal / Ferroelectric / Insulator / Semiconductor Field Effect Transistors Using a Pt/SrBi2Ta2O9 /Y2O3 /Si Structure”, Jpn. J. Appl. Phys., vol.37, part 1, No.3B, pp. 1107-1109, 1998.
    [16] T. Hirai, Y. Fujisaki, and K. Nagashima, “Preparation of SrBi2Ta2O9 Film at Low Temperatures and fabrication of a Metal / Ferroelectric /Insulator /Semiconductor Field Transistor Using Al/SrBi2Ta2O9/CeO2/Si (100) Structures”, Jpn. J. Appl. Phys., Vol. 36, Part 1, No. 9B, pp. 5908-5911, 1997.
    [17] 沈士傑, 徐清祥 “淺談快閃式記憶體(Flash Memory)之發展”, 電子月刊, 9月號,1996.
    [18] H. M. Dulker, P. D. Beal, and J. F. Scott, “Fatigue and switching in ferroelectric memories : theory and experiment”, J. Appl. Phys., Vol.68, pp. 5783-5791, 1990.
    [19] J. F. Scott, “Device Physics of Ferroelectric Thin-Film Memories”, Jpn. J. Appl. Phys., Vol. 38, Part 1, No. 4B, pp.2272-2274, 1999.
    [20] G. W. Dietz, M. Schumacher, and R. Waser, “Leakage Current in Ba0.7Sr0.3TiO3 Thin Films for Ultrahigh-Density Dynamic Random Access Memories “, J. Appl. Phys., Vol. 82, Issue 5, pp. 2359-2361, 1997.
    [21] B. A. Baumert, L. H. Chang, A. T. Matsuda, T. L. Tsai, C. J. Tracy, R. B. Gregory, P. L. Fejes, N. G. Cave, and W. Chen, “Characterization of Sputtered Barium Strontium Titanate and Strontium Titanate Thin Films”, J. Appl. Phys., vol. 85, Issue 2, pp.2558-2566, 1997.
    [22] C. M. Wu, and F. Y. Chen, “The Study of (Ba,Sr)TiO3 Thin Films Deposited on LaNiO3 Electrode by RF Magnetron Sputtering for DRAMs Applications”, MSE of NTHU, 1997.
    [23] H. Hu, and S. B. Ktupanidhi, “Current-voltage characteristics of ultrafine-grained ferroelectric Pb(Zr,Ti)O3 thin film”, J. Mater. Res., Vol. 9, No. 6, 1994.
    [24] J. F. Scott, C. A. Araujo, B. M. Melnick, and L. D. McMillan, “Quantitative measurement of space-charge effects in lead zirconate-titanate memories”, J. Appl. Phys., vol.70, Issue1, pp. 382-388, 1991.
    [25] C. Sudhama, A. C. Campbell, P. D. Maniar, R. E. Jones, R. Moazzami, and C. J. Mogab, “A model for electrical conduction in metal-ferroelectric-metal thin film capacitor”, J. Appl. phys., vol.75, Issue. 2, pp. 1014-1022, 1994.
    [26] N. Inoue and Y. Hayashi, “Effect of imprint on operation and reliability of ferroelectric random acess memory(FeRAM)”, IEEE Transactions on Electron Devices, vol. 48, pp. 2266-2272, 2001.
    [27] Y. Nakao, “Study on Pb-based ferroelectric thin films prepared by sol-gel method for memory application”, Jpn. J. Appl. Phys., vol. 33, No. 9B, pp. 5265-5267, 1994.
    [28] K. Aoki, “Dielectric Properties of (111) and (100) Lead-Zirconate-Titanate Films Prepared by Sol-Gel Technique”, Jpn. J. Appl. Phys. , vol. 33, No. 9B, pp. 5155-5158, 1994.
    [29] W. J. Lin, “Growth and fatigue properties of pulsed laser deposited PLZT thin films with [001] preferred orientation”, J. Mat. Sci.: MATERIALS IN ELECTRONICS, vol. 7, pp. 409-417, 1996.
    [30] T. F. Tseng, R. P. Yang, and K. S. Liu, “Ferroelectric properties of PLZT films deposited on Si3N4-coated Si substrates by pulsed laser deposition process”, Appl. Phys. Lett., vol. 70, Issue 1, pp. 46-48, 1997.
    [31] H. Nakasima, “Electrical properties for capacitors of dynamic random access memory on PLZT thin films by metaorganic chemical vapor deposition”, Jpn. J. Appl. Phys., vol.33, No. 9B, pp. 5139-5142, 1994.
    [32] C.M. Foster, “Single-crystal PZT thin films prepared by metal-organic chemical vapor deposition:Systematic compositional variation of electronic and optical properties”, J. Appl. Phys., vol. 81, Issue 5, pp. 2349-2357, 1997.
    [33] H. Miki, and Y. Ohji, “Uniform Ultra-Thin Pb(Zr,Ti)O3 Films Formed by Metal-Organic Chemical Vapor Deposition and Their Electrical Characteristics”, Jpn. J. Appl. Phys., vol. 33, No. 9B, pp. 5143-5146, 1994.
    [34] E. Cattan, “Structure control of PZT buffer layers produced by magnetron sputtering”, Appl. Phys. Lett., vol. 70, Issue 13, pp. 1718-1720, 1997.
    [35] O. Auciello, A. I. Kingon, and S. B. Krupanidhi, “Sputter Synthesis of Ferroelectric Films and Heterostructures”, MAT. RES. BULLETIN, p.25, 1996.
    [36] L. Wang, “Properties of PbZrTiO3 Thin Films Preapred By R.F. Magnetron Sputtering and Heat Treatment”, Mat. Res. Bull., vol. 25, pp.1495-1501, 1990.
    [37] V. Chikarmane, “Effects of post-deposition annealing ambient on the electrical characteristics and phase transformation kinetics of sputtered lead zirconate (65/35) thin film capacitors”, J. Vac. Scl. Technol. A, vol. 10, Issue 4, 1992.
    [38] F. Y. Chen, Y. K. Fang, and M. J. Sun, “Experimental characterization and modeling of a ferroelectric bulk channel field effect transistor with nonvolatile memory characteristics,” Appl. Phys. Lett., vol. 69, pp.812-814, 1996.
    [39] Y. Watanabe, “Epitaxial all-perovskite ferroelectric field effect transistor with a memory retention,” Appl. Phys. Lett., vol. 66, pp.1770-1772, 1995.
    [40] K. Nagashima, T. Hirai, H. Koike, Y. Fujisaki and Y. Tarui, “Characteristics of Metal/Ferroelectric/Insulator/Semiconductor Structure Using SrBi 2Ta 2O 9 as the Ferroelectric Material,” Jpn. J. Appl. Phys., pt. 1, vol. 35, no. 4B, pp.1680-1682, 1996.
    [41] K. Sugibuchi, Y. Kurogi, and N. Endo, “.Ferroelectric field-effect memory device using Bi4Ti3O12 film,” J. Appl. Phys., vol. 46, pp. 2877-2881, November 1975.
    [42] H. Sugiyama, T. Nakaiso, Y. Adachi, M. Noda, M. Okuyama, “An improvement in C-V Characteristics of Metal/Ferroelectric/Insulator/Semiconductor Structure for Ferroelectric Gate FET Memory Using a Silicon Nitride Buffer Layer,” Jpn. J. Appl. Phys., pt. 1, vol. 38, no. 4B, pp.2131-2135, 2000.
    [43] D. M. Fleetwood, and Senior Member, IEEE Transactions of Nuclear Science, Vol. 39, 1992.
    [44] Y. Watanabe, “Energy band diagram of ferroelectric heterostructures and its application to the thermodynamic feasibility of ferroelectric FET ,“ Solid State Ionics, vol. 108, pp. 59-65, 1998.
    [45] 鍾維烈, “鐵電體物理學”,科學出版社,1998.
    [46] A. Chin, M. Y. Yang, C. L. Sun ,and S. Y. Chen, “Stack Gate PZT/Al2O3 One Transistor Ferroelectric Memory,” IEEE Electron Device Lett., vol. 22, pp. 336-338, 2001.
    [47] M. Y. Tang, S. B. Chen, A. Chin, C. L. Sun, B. C. Lan, and S. Y. Chen, “One-transistor PZT/Al2O3, SBT/Al2O3 and BLT/Al2O3 stacked gate memory,” in IEDM Tech. Dig., 2001, pp. 36.3.1-36.3.4.
    [48]T. Kanashima and M. Okuyama, “Analyses of High Frequency Capacitance- Voltage Characteristics of Metal/Ferroelectric/Insulator/Semiconductor
    Structure ,” Jpn. J. Appl. Phys., pt. 1, vol. 38, no. 4A, pp.2044-2048, 1999
    [49] E. Tokumitsu, R. I. Nakamura, and H. Ishiwara, “Nonvolatile memory operations of metal-ferroelectric-insulator-semiconductor (MFIS) FETs using PLZT/STO/Si(100) structures”, IEEE Electron Device Lett., vol. 18, No. 4, pp.160-162, 1997.
    [50] F. Y. Chen, Y. K. Fang, and M. J. Sun, “Experimental characterization and modeling of a ferroelectric bulk channel field effect transistor with nonvolatile memory characteristics”, Appl. Phys. Lett., Vol. 69, pp.812-814, 1996.
    [51] Y. Lin, B. Zhao, H. Peng, Z. Hao, B. Xu, Z. Zhao, and J.Chen, “Asymmetry in the hysteresis loop of Pb(Zr0.53Ti0.47)O3/SiO2/Si structures”, J. Appl. Phys., Vol. 86, pp.4467-4472, 1999.
    [52] G. Yi, Z. Wu, and M. Sayer, “Preparation of Pb(Zr,Ti)O3 thin films by sol gel processing: Electrical, optical, and electro-optic properties,” J. Appl. Phys., vol.64, pp. 2717-2724, 1988.
    [53] M. P. Moret, and M. A. C. Devillers, “Optical properties of PbTiO3, PbZrxTi1-xO3, andPbZrO3 films deposited by metalorganic chemical vapor on SrTiO3,” J. Appl. Phys., vol.92, pp.468-472, 2002.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE