研究生: |
施銘鴻 Shih, Ming-Hong |
---|---|
論文名稱: |
可用於聚焦式超音波血腦屏障開啟監控之超音波及光聲雙模態對比增強影像技術 Dual-Modal – Photoacoustic and Ultrasound – Contrast Enhanced Imaging of Focused-Ultrasound Induced Blood-Brain Barrier Disruption |
指導教授: |
李夢麟
Li, Meng-Lin |
口試委員: |
李夢麟
劉浩澧 沈哲州 黃執中 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 43 |
中文關鍵詞: | 血腦屏障 、聚焦式超音波 、金奈米桿 、光聲造影 、雙模態影像 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
血腦屏障阻擋了大部分治療腦部疾病的藥物進入腦內,使得現有醫學在治療腦部疾病的效果不彰。聚焦式超音波能局部且可逆地開啟血腦屏障,使藥物得以進入腦內。本研究開發了可應用於在聚焦式超音波血腦屏障開啟監控之雙模態–超音波及光聲–對比增強造影技術,有助於影像分析及判斷。我們使用金奈米桿做為此雙模態影像增強的對比劑,其奈米等級的大小使其容易從血腦屏障開啟處的血管滲入周圍腦組織,在腦組織中堆積造成超音波的強散射,且其具有特殊的光學特性,可調整光吸收波段於血液光吸收較弱的近紅外光波段內,使其為一良好的光聲和超音波對比劑。本研究使用聚焦式超音波搭配微氣泡在小動物模型上開啟血腦屏障,並注射對比劑金奈米桿增強超音波、光聲影像對比,在活體實驗驗證結果顯示本系統在超音波、光聲和聚焦式超音波共焦下,可用來做血腦屏障開啟位置的定位,以及監控對比劑金奈米桿造成的超音波和光聲對比增強影像。未來可進一步做血腦屏障開啟程度及超音波、光聲的時間強度曲線做定量分析,並且將應用此整合平台於腫瘤光熱治療及監控藥物輸送上。
Blood-brain barrier (BBB) blocks most drugs for the treatment of brain diseases, resulting in poor performance of current medical treatments of brain diseases. Focused ultrasound (FUS) along with micro-bubble administration can induce BBB disruption locally and reversibly, allowing drugs penetrating into the brain. In this study, we developed a dual modal - ultrasound and photoacoustic - contrast-enhanced imaging technique to monitor FUS induced BBB disruption. This technique provides the complementary characteristics of two different images, helping us to perform image analysis and recognition. Gold nanorods (AuNR) were used as the contrast agent-, whose nanometer-scale size provides the intrinsic extravasation tendency from BBB opening foci. The accumulation of AuNRs in brain tissue results in strong scattering of ultrasound. In addition, AuNRs used own typical optical tunability, having absorption peak at near-infrared spectral range. Based on the above properties, AuNRs can serve as a good contrast agent for both PA and US imaging in BBB disruption study. This study used focused ultrasound with microbubbles to induce BBB disruption on a small animal models and injected contrast agent - AuNRs to enhance contrast of ultrasound and photoacoustic images. The in vivo experimental results showed that our developed US/PA/FUS confocal system can be used for targeting the position of BBB disruption, and monitoring the ultrasound and photoacoustic contrast-enhanced images caused by AuNRs. In further research, our system can be used for quantitative analysis on BBB disruption as well as time intensity curve of ultrasound and photoacoustic signal, also can be applied to photothermal therapy on tumor and monitoring drug delivery.
1. Pardridge, W.M., The Blood-Brain Barrier: Bottleneck in Brain Drug Development. NeuroRX, 2005. 2(1): p. 3-14.
2. A. Bowden and C. Elliss, Expert Reviews in Molecular Medicine (Cambridge University Press, 2003)
3. Zunkeler, B., et al., Quantification and pharmacokinetics of blood-brain barrier disruption in humans. Journal of Neurosurgery, 1996. 85(6): p. 1056-1065.
4. Lossinsky, A.S., A.W. Vorbrodt, and H.M. Wisniewski, SCANNING AND TRANSMISSION ELECTRON-MICROSCOPIC STUDIES OF MICROVASCULAR PATHOLOGY IN THE OSMOTICALLY IMPAIRED BLOOD-BRAIN-BARRIER. Journal of Neurocytology, 1995. 24(10): p. 795-806.
5. Hanig, J.P., J.M. Morrison, and S. Krop, ETHANOL ENHANCEMENT OF BLOOD-BRAIN BARRIER PERMEABILITY TO CATECHOLAMINES IN CHICKS. European Journal of Pharmacology, 1972. 18(1): p. 79-&.
6. Saija, A., et al., Changes in the permeability of the blood-brain barrier following sodium dodecyl sulphate administration in the rat. Experimental Brain Research, 1997. 115(3): p. 546-551.
7. Rabchevsky, A.G., J.D. Degos, and P.A. Dreyfus, Peripheral injections of Freund's adjuvant in mice provoke leakage of serum proteins through the blood-brain barrier without inducing reactive gliosis. Brain Research, 1999. 832(1-2): p. 84-96.
8. Choi, J.J., et al., Focused ultrasound-induced molecular delivery through the blood-brain barrier, in 2007 IEEE Ultrasonics Symposium Proceedings, Vols 1-6. 2007, IEEE: New York. p. 1192-1195.
9. Vykhodtseva, N.I., K. Hynynen, and C. Damianou, HISTOLOGIC EFFECTS OF HIGH-INTENSITY PULSED ULTRASOUND EXPOSURE WITH SUBHARMONIC EMISSION IN RABBIT BRAIN IN-VIVO. Ultrasound in Medicine and Biology, 1995. 21(7): p. 969-979.
10. Hynynen, K., et al., MRI guided focal blood brain barrier opening using focused ultrasound, in 2000 IEEE Ultrasonics Symposium Proceedings, Vols 1 and 2, S.C. Schneider, M. Levy, and B.R. McAvoy, Editors. 2000, IEEE: New York. p. 1417-1420.
11. Hynynen, K., et al., Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits. Radiology, 2001. 220(3): p. 640-646.
12. Yang, F.Y., et al., Quantitative evaluation of focused ultrasound with a contrast agent on blood-brain barrier disruption. Ultrasound in Medicine and Biology, 2007. 33(9): p. 1421-1427.
13. Meairs, S. and A. Alonso, Ultrasound, microbubbles and the blood-brain barrier. Progress in Biophysics & Molecular Biology, 2007. 93(1-3): p. 354-362.
14. Miller, M.W., D.L. Miller, and A.A. Brayman, A review of in vitro bioeffects of inertial ultrasonic cavitation from a mechanistic perspective. Ultrasound in Medicine and Biology, 1996. 22(9): p. 1131-1154.
15. Crum, L.A., CAVITATION MICROJETS AS A CONTRIBUTORY MECHANISM FOR RENAL CALCULI DISINTEGRATION IN ESWL. Journal of Urology, 1988. 140(6): p. 1587-1590.
16. Nyborg, W.L., Biological effects of ultrasound: Development of safety guidelines. Part II: General review. Ultrasound in Medicine and Biology, 2001. 27(3): p. 301-333.
17. Tung, Y.S., et al., In vivo transcranial cavitation threshold detection during ultrasound-induced blood-brain barrier opening in mice. Physics in Medicine and Biology, 2010. 55(20): p. 6141-6155.
18. Chen, B., et al., Severe Blood-Brain Barrier Disruption and Surrounding Tissue Injury. Stroke, 2009. 40(12): p. E666-E674.
19. Wang, P.H., et al., Photoacoustic micro-imaging of focused-ultrasound induced blood-brain-barrier opening in a rat model, in Photons Plus Ultrasound: Imaging and Sensing 2010, A.A. Oraevsky and L.V. Wang, Editors. 2010, Spie-Int Soc Optical Engineering: Bellingham.
20. Jain, P.K., et al., Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine. Journal of Physical Chemistry B, 2006. 110(14): p. 7238-7248.
21. Chang, S.S., et al., The shape transition of gold nanorods. Langmuir, 1999. 15(3): p. 701-709.
22. Connor, E.E., et al., Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small, 2005. 1(3): p. 325-327.
23. Goodman, C.M., et al., Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjugate Chemistry, 2004. 15(4): p. 897-900.
24. Song, K.H., et al., Noninvasive in vivo spectroscopic nanorod-contrast photoacoustic mapping of sentinel lymph nodes. European Journal of Radiology, 2009. 70(2): p. 227-231.
25. Agarwal, A., et al., Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging. Journal of Applied Physics, 2007. 102(6).
26. Tran, T.D., et al., Clinical applications of perfluorocarbon nanoparticles for molecular imaging and targeted therapeutics. International Journal of Nanomedicine, 2007. 2(4): p. 515-526.
27. Liang, H.D. and M.J.K. Blomley, The role of ultrasound in molecular imaging. British Journal of Radiology, 2003. 76: p. S140-S150.
28. Dayton, P.A. and K.W. Ferrara, Targeted imaging using ultrasound. Journal of Magnetic Resonance Imaging, 2002. 16(4): p. 362-377.
29. Ching-Hsiang, F., et al. Detection of blood-brain barrier disruption by contrast-enhanced high frequency ultrasound image: Small animals study. in Ultrasonics Symposium (IUS), 2009 IEEE International. 2009.
30. Liu, J., et al., Nanoparticles as image enhancing agents for ultrasonography. Physics in Medicine and Biology, 2006. 51(9): p. 2179-2189.
31. Wang, P.H., et al., Gold Nanorods as a Multi-modal - Ultrasound and Photoacoustic - Contrast Agent for In Vivo Imaging Focused-Ultrasound Induced Blood-Brain-Barrier Opening. World Molecular Imaging Congress, 2010.
32. Liu, H.L., et al., Magnetic Resonance Imaging Enhanced by Superparamagnetic Iron Oxide Particles: Usefulness for Distinguishing Between Focused Ultrasound-Induced Blood-Brain Barrier Disruption and Brain Hemorrhage. Journal of Magnetic Resonance Imaging, 2009. 29(1): p. 31-38.