簡易檢索 / 詳目顯示

研究生: 林正
Lin,Cheng
論文名稱: 表面張力驅動之指向性微裝置批次自組裝技術
Uniquely Orienting Micro Device for Self-alignment in Surface Tension Driven Micro Self-assembly
指導教授: 錢景常
Chieng,Ching-Chang
曾繁根
Tseng,Fan-Gang
口試委員:
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2008
畢業學年度: 97
語文別: 中文
論文頁數: 137
中文關鍵詞: 流體自組裝微部件黏合劑計算流體力學流體-結構交互耦合指向對位自組裝單分子層能量障壁
外文關鍵詞: Fluidic Self-Assembly(FSA), Micropart, Lubricant, Computational Fluid Dynamic(CFD), Fluid-Structure Interaction(FSI), Self-Assembled Monolayer(SAM), Uni-direction, Energy barrier
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來先進小型化及微流體技術,帶來在流體系統中數仟計微電子元件組裝創新方法,而傳統抓取與置放技術平台於處理微元件組合過程,對於相較講求大量、效率及精確的微組裝確實是遭遇到很大困難。因此,流體自我對位研究可提供快速、低成本及精密對位來處理數仟計微元件組裝技術。
    本文研究方向係微尺度微流體自組裝過程細部描述,經由數值模擬檢驗不同參數對流體自我組裝過程機制影響,由於微部件與液體有強表面張力交互作用之特性,可利用商用數值流體力學軟體(CFD-ACE+)來處理流體-結構交互耦合問題能力。數值模式建立係包括微部件、液體、基板及懸浮流體,進一步模型建構及參數分析,針對微部件–基板與液體–基板之間介面不同高度及接觸角效應,探討對流體自我組裝過程造成對位精確度之影響;模擬結果顯示介於潤滑劑及固體表面有高親水角度、較低潤滑劑高度、較高表面張力係數及較高黏滯潤滑劑,均會增進在回復過程的對位能力。
    在實驗方面,可分為兩個部分(1)方形微部件是由二氧化矽四吋晶圓,切割成尺寸大小從350×350×170 μm3至1000×1000×440 μm3,然後將微元件經由吸管直接到達在水下的基板;比較不同尺度大小微部件及兩種黏合劑(高分子或低溫焊錫)效應對流體自組裝影響,此參數基礎分析可提供完成最佳化自組裝技術,高分子或焊錫黏合力實驗結果在較大接合處分別為117±15 μN及510±50 μN,此實驗條件顯示有較高組裝良率可達到100%。(2) 針對指定方向對位有發展新穎的圖案設計,淚滴尖角60°內部有中空橢圓孔(兩種新穎圖案TDE-1及TDE-2),此形狀設計可縮短角度跨距和減少能量障礙,加強指向對準能力;新穎圖案設計可行性評估,可從實驗及表面能模型結果,提供作為定量及定性分析依據。實驗結果顯示TDE新穎圖案可精確90°旋轉對位和較高毛細力,高分子黏合力量測結果在TDE-2圖案為41.2 ±10 μN;流體自組裝使用低溫焊錫及輔助對位模板黏接微部件和基板,在水溶液環境中完成,對位誤差使用標準方差計算角度對位為0.9°及平移對位為15 μm,角度對位組裝良率可達100%。


    Recent advances of miniaturization and microfluidics technologies bring novel ways of parallely assembling thousands of micron-scale electronic components in fluidic phase. Conventional pick-and-place technology platform in handling micron-scale components assembly processes encounters tremendous difficulties in terms of capacity, efficiency and accuracy. Hence, Fluidic Self-Assembly (FSA) approach provides an alternative means for fast, economic, and precise handling of thousands of micro-scale parts.
    The present study is intended to delineate the detailed features of fluidic self-assembly process of micro-scale parts and examine the important variables which govern the mechanisms of fluidic self-assembly process by numerical simulations. In order to characterize the strong interactions between the micro-part and lubricant, commercial Computational Fluid Dynamics (CFD) software which can handle Fluid-Structure Interaction (FSI) problems is utilized to investigate the effects of lubricant height and contact angles of interfaces between micropart-substrate and lubricant-substrate on the accuracy of micropart’s self-alignment process. The computational model is based on first principle conservation equations and is constructed by the coupling of two- phase modeling using volume of fraction, solid structure modeling, and fluid-structure coupling. A matching experimental system is set up for the micropart of aspect ratio from 3:1 to 10:1 to validate the 2-D computational simulations. Simulations reveal that high degree of hydrophilicity between lubricant and solid surfaces is required for self-assembly restoring, and lower lubricant height, higher surface tension coefficient and higher viscosity enforce the re-alignment/restoring process. Characterization of the flowfield inside lubricant slug also indicates that the asymmetry of the vortices/stress distribution at both ends of the lubricant meniscus drives the micropart in an oscillation restoring process.
    The micro parts fabricated from silicon-oxide wafers and ranging in size from 350×350×170 μm3 to 1000×1000×440 μm3, aligned and filled to designated sites in the substrate under water. The effects of micropart sizes and lubricants on the FSA processes are compared. This study provides a fundamental analysis for achieving and optimizing the self-alignment. The polymer or solder adhesion force of the square-patterned micropart immobilized at the larger binding sites were estimated to be 117±15 μN and 510±50 μN, respectively, resulting in higher assembly yield of up to 100% for these samples.
    Another research is to develop a novel design of two-dimensional modified alignment mark of tear-drop/ elliptical hole with a tip angle of 60 (TDE-1 and TDE-2 pattern shapes) are adopted to improve the recovery angle and reduce the energy barrier to uni-directional micropart alignment. The results of the experimental and surface energy model are compared both qualitatively and quantitatively to examine the feasibility of the new design patterns. Experimental results reveal that the micropart of TDE patterns could be accurately aligned by rotation through 90°and higher capillary force. The acrylate adhesive force of the TDE-2 patterned micropart was estimated to be 41.2±10μN. Fluidic self-assembly (FSA) was performed carried out in an aqueous environment, using a low-temperature solder adhesive for part-substrate lubricant and aligned template-assisted assembly. The standard deviation of aligned angular orientation was 0.9°and that of lateral accuracy was 15 μm ; an assembly yield of 100% was achieved. Micropart self-alignment with a unique in-plane orientation is achieved by combining shape recognition and the adhesive capillary effect. This self-assembly technique could be used to produce a heterogeneous system for packaging, including LSI and MEMS.

    摘要 Ⅰ 目錄 Ⅶ 圖目錄 Ⅹ 表目錄 ⅩⅥ 第1章 研究動機 1 1.1 緒論 1 1.2 論文研究動機之流程 4 第2章 原理分析與探討 6 2.1表面張力 6 2.2凡得瓦爾力 7 2.3親水與疏水交互作用 9 2.4表面能 9 2.5 表面能量和接觸角 11 2.6 拉氏壓力 13 2.7 黏附效應 14 第3章 文獻探討 17 3.1微流體自組裝初探 17 3.2微流體自組裝技術應用 25 3.2-1微流體自組裝–應用於LED組裝 25 3.2-2微流體自組裝–應用於奈米柱組裝 27 3.2-3微流體自組裝–應用於生化分析 28 3.2-4微流體自組裝–應用於下一代射頻通信元件 30 3.2-5微流體自組裝–應用於RFID組裝 31 3.2-6微流體自組裝–應用軟性塑膠基板組裝 32 3.2-7微流體自組裝–應用指定方向組裝 34 3.2-8微流體自組裝–應用批次組裝 36 3.2-9微流體自組裝–應用於堆疊系統組裝 38 3.2-10 微流體自組裝–多重晶片自組裝 41 3.3文獻綜合比較 42 第4章 表面張力驅動微部件自對位數值模擬 49 4.1 CFDRC-ACE+ 數值模擬原理 49 4.1-1 格點設計 51 4.1-2 邊界條件與初始設定 52 4.2實驗架構及程序 53 4.2-1 微部件、基板製造及表面處理 54 4.2-2 流體自組裝實驗 56 4.3 結果與討論 57 4.3-1 二維計算模型與實驗比較 58 4.3-2 親水角影響 59 4.3-2(1) 潤滑劑黏接上或下壁面有相同親水角 (aTop=aBottom=a) 59 4.3-2(2) 潤滑劑黏接上或下壁面不同親水角 (aTop¹aBottom) 62 4.3-3 潤滑劑高度影響 62 4.3-4 表面張力效應 65 4.3-5 黏滯效應 66 4.3-6 詳細物理機制研究 67 4.3-6(1) 壓力/剪應力分佈 67 4.3-6(2) 潤滑劑內部流場 70 4.4 結論 73 第五章 流體自組裝基礎研究實驗 74 5.1微部件設計與製程 74 5.1-1微部件設計 75 5.1-2製程步驟 78 5.2基板設計與製程 81 5.2-1基板設計 81 5.2-2 製程步驟 83 5.3 接合劑黏附 87 5.4 流體自組裝概述 91 5.5自動對位分析方法 92 5.5-1黏附力實驗 93 5.5-2自組裝表面能計算 94 5.6 實驗結果與討論 96 5.6-1晶粒大小選擇對自組裝影響 96 5.6-2使用高分子潤滑劑應用於流體自組裝 97 5.6-3使用低溫焊錫應用於流體自組裝 102 5.6-4自對位動態過程 106 5.7 結論 108 第六章 指向性微部件自組裝實驗 109 6.1指向性微部件自對位概念 109 6.2指向對位分析方法 111 6.2-1噴流推動實驗平台 111 6.2-2黏附力實驗 112 6.2-3表面能模型 113 6.3實驗結果與討論 116 6.3-1黏附力量測 117 6.3-2指向性對位動態分析 120 6.3-3指向性對位組裝接合 123 6.4 結論 125 第七章 未來研究方向 126 參考文獻 128

    [1]. J. Lienemann, “Modeling and simulation of the fluidic controlled self-assembly of micro parts,” Diploma thesis, Institute for microsystem technology, University of Albert Ludwig, Freiburg, Germany, May, 2002.
    [2]. J. Israelachvili, Intermolecular and surface forces, Academic press, 2nd ed.,
    1991.
    [3]. F. M. Fowkes, ”Determination of intermolecular forces by surface-chemical
    techniques,” Ind. Eng. Chem., Vol. 56, No. 12, pp.40~52, 1964.
    [4]. R. S. Fearing, "Survey of sticking effects for micro-parts," IEEE/RSJ Int. Conf. on Robotics and Intelligent System(IROS) , Pittsburg, pp.212~217, 1995.
    [5]. W. S. N. Trimmer, "Microrobots and micromechanical systems," Sensor and actuators, Vol. 19, No. 3, pp.267~287, 1989.
    [6]. G. M. Whitesides, and Bartosz Grzybowski, “Self-assembly at all scales,” Science ,Vol. 295, pp. 2418~2421, 2002.
    [7]. U. Srinivsan, R. T. Howe, and D. Liepmann, “Fluidic microassembly using patterned self-assembled monolayers and shape matching,” in Proc. 1999 Int. Conf. On Solid-State Sensors and Actuators (Transducers), Japan , pp. 1170~1173, 1999.
    [8]. U. Srinivsan, D. Liepmann, and R. T. Howe, “Microstructure to substrate self-assembly using capillary forces,” Journal of Microelectromechanical Systems, Vol. 10, No. 1, pp. 17~24, 2001.
    [9]. M. B. Cohn, K. F. Böhringer,J. M. Noworolski, A. Singh, C. G. Keller ,K. Y. Goldberg, and R. T. Howe, “Microassembly technologies for MEMS,” Proc. SPIE Micromaching and Microfabrication , Santa Clara, CA,USA, pp.2~16, Sept.20~22, 1998.
    [10]. H. J. Yeh , and J. S. Smith, “Fluidic assembly for the integration of GaAs light-emitting diodes on Si substrate,”IEEE Photon. Technol. Lett., Vol. 46, pp. 706-709, 1994.
    [11]. Alien Technology, Morgan Hill, CA, http://www.alientechnology.com/technology/overview.html
    [12]. R. Mittal,V. Seshadri,S. E. Sarma,H. S. Udaykumar , “Computation Modeling of Fluidic Micro-Handling Processes,” in Fifth Int. Conference on Modeling and Simulation of Microsystem (MSM’02),San Juan ,Puerto Rico ,Apr. 22~25,2002.
    [13]. U. Srinivsan, M. H. Helmbrecht, C. Rembe, R. S. Muller, and R. T. Howe, “Fluidic self-assembly of micromirror onto surface micro-machined actuators” in 2000 IEEE/LEOS Intl. Conf. Optical MEMS, Kauai, HI, pp. 59~60, Aug. 21-24, 2000.
    [14]. H. O. Jacobs, A. R. Tao, A. Schwartz, D. H. Gracias, and G. M. Whitesides, “Fabrication of a cylindrical display by patterned assembly,” Science , Vol. 296, pp. 323~325,2002.
    [15]. K. Hosokawa, I. Shimoyama and H. Miura, "Two-Dimensional Micro-Self- Assembly using the Surface Tension of Water", Sensor and Actuator A, 57, pp. 117~125, 1996.
    [16]. K. Sato, S. Hata, and A. Shimokohbe, “Self-alignment for microparts using water surface tension,” Proc SPIE 1999, Vol. 3892, pp. 321~329, 1999.
    [17]. K. Sato, K. Ito, S. Hata, and A. Schimokohbe, “Self-alignment of microparts using liquid surface tension-behavior of microparts and alignment characteristics,” Precision Engineering, Vol. 27, pp. 42~50, 2003.
    [18]. K. F. Böhringer, U. Srinivsan, and R. T. Howe, “Modeling of capillary forces and binding sites for fluidic self-assembly,” Proc. IEEE Workshop on Micro Electro Mechanical System (MEMS), Switzerland, pp.369~374, 2001.
    [19]. A. Greiner, J. Lienemann, J. G. Korvink, X. Xiong, Y. Hanein, and K. F. Böhringer, “Capillary forces in micro-fluidic self-assembly,” in Fifth Int. Conference on Modeling and Simulation of icrosystem (MSM’02),San Juan, Puerto Rico, Apr. 22~25,2002.
    [20]. J. Lienemann, A. Greiner, J. G. Korvink, X. Xiong, Y. Hanein, K. F. Böhringer, "Modelling, Simulation and Experimentation of a Promising New Packaging Technology Parallel Fluidic Self-Assembly of Micro Devices." Sensors Update, Vol. 13, No.1, pp.3-43, December 2003.
    [21]. X. Xiong, Y. Hanein, J. Fang, Y. Wang, W. Wang, D. T. Schwartz, and K. F. Böhringer, “Controlled multibatch self-assembly of microdevices,” Journal of Microelectromechanical Systems, Vol. 12, No. 2, pp. 117~127, April 2003.
    [22]. J. Lienemann, A. Greiner, and J. G. Korvink, “Volume shrinking in Micro-Fluidic Self-Assembly,” submitted to the 4th International Conference on Advanced Semiconductor Device and Microsystems (ASDAM), Smolenice Castle, Slovakia, 2002.
    [23]. R. R. A. Syms, E. M. Yeatman, V. M. Bright, and G. M. Whitesides, “Surface tension-powered self-assembly of microstructures-the state of the art,” Journal of Microelectro -mechanical Systems, Vol. 12, No. 4, pp. 387~417,August 2003.
    [24]. A. Terfort, N. Bowden, and G. M. Whitesides, “Three-dimensional self-assembly of millimeter-scale components,” Nature, Vol. 386, pp. 162~164,1997.
    [25]. S. H. Liang, X. Xiong, K. F. Böhringer, "Towards Optimal Designs for Self-alignment in Surface-tension Driven Micro-assembly," IEEE Conference on Micro Electro Mechanical Systems (MEMS), Maastricht, Holland, January 2004.
    [26]. W. Zheng, P. Buhlmann, and H. O. Jacobs, “Sequential shape-and-solder-directed self-assembly of functional microsystems, ” PNAS, Vol. 101, no. 35,pp. 12814~12817, August 31, 2004.
    [27]. W. Zheng, and H. O. Jacobs, “Shape-and-solder-directed self-assembly to package semiconductor device segments,” Appl. Phys. Letter, Vol. 85, pp. 3635~3637, 2004.
    [28]. Z. Gu, Y. Chen, and D. H. Gracias, "Surface tension driven self-assembly of bundles and networks of 200 nm Diameter rods using a polymerizable adhesive," Langmuir, 20(26), pp.11308~11311, 2004.
    [29]. S. Park, J. H. Lim, S. W. Chung, and C. A. Mirkin, “Self-assembly of mesoscopic metal-polymer amphiphiles,” Science, Vol. 303, pp. 348~351, 2004.
    [30]. Z. L. Zhi, Y. Murakami, Y. Morita, Q. Hasan, and E. Tamiya, “Multianalyte immunoassay with self-assembled addressable microparticle array on a chip,” Analytical Biochemistry, Vol. 318, pp. 236~243, 2003.
    [31] X.J. Zhang, S. Zappe, R.W. Bernstein, C. C. Chen,O. Sahin,M. Scott , and O. Solgaard, "High-precision characterization of embryo position force using MEMS optical encoder," 7th International Conference on Miniaturized Chemical and Biochemical Analysis Systems, Squaw Valley, USA, October 5~9, 2003.
    [32]. K. L. Scott, T. Hirano, H. Yang, H. Singh, and R. T. Howe, “High-Performance Inductors using Capillary based Fluidic Self-Assembly,” Journal of Microelectro -mechanical Systems, Vol. 13, No. 2, pp. 300~309, April 2004.
    [33]. J. Chung, W. Zheng, T. J. Hatch and H. O. Jacobs, “Programmable reconfigurable self-assembly: parallel heterogeneous integration of chip-scale components on planar and noplanar surfaces,” Journal of Microelectromech. Syst., Vol. 15, No. 3, pp. 457~464, June 2006.
    [34]. W. Zheng, J. Chung, and H. O. Jacobs, “Fluidic heterogeneous microsystems
    assembly and packaging,” Journal of Microelectromech. Syst., Vol. 15, No. 4, pp. 864~870, August 2006.
    [35]. S. A. Stauth, and B. A. Parviz, “Self-assembled single-crystal silicon circuits on plastic,” Proc. Nat. Acad. Sci. USA, 103, pp. 13922–13927, 2006.
    [36]. T. Tojo, K. Yamanaka, B. P. Singh, K. Onozawa, D. Ueda, I. Soga, K. Maezawa and T. Mizutani, “Dual-wavelength high-power laser diodes fabricated by selective fluidic self-assembly,” Jpn. J. Appl. Phys., Vol. 44, No. 4B, pp. 2568–2571, 2005.
    [37]. J. Fang and K. F. Bohringer, “Wafer-level packaging based on uniquely orienting self-assembly (The DUO-SPASS Processes),” J. Microelectromech. Syst., Vol. 15, No.3, pp. 531–540, 2006.
    [38]. W. Zheng and H. O. Jacobs, “Self-assembly process to integrate and connect semiconductor dies on surfaces with single-angular orientation and contact-pad registration,” Adv. Mater., Vol. 18, pp. 1387–1392, 2006.
    [39]. M. Liu, W. M. Lau, and J. Yang, “On-demand multi-batch self-assembly of hybrid MEMS by patterning solders of different melting point,” J. Micromech. Microeng. , Vol. 17, pp. 2163~2168, 2007.
    [40]. R. Sharma, “Thermally controlled fluidic Self-assembly,” Langmuir, Vol. 23, pp. 6843~6849, 2007.
    [41]. K. Reynolds, E. Murray, A. O’Riordan, and G. Redmond, “Self-assembly of a linear mesoscale tetramer with electrical connectivity,” Appl. Phys. A, Vol. 83, pp. 23-26, 2006.
    [42]. Y. Higuchi, K. Sugano, T. Tsuchiya, and O. Tabata, “Temperature Controlled Capillary Driven Sequential Stacking Self-Assembly using Two Different Adhesives,” 6th International IEEE Conference on Polymers and Adhesives in Microelectronics and Photonics (IEEE Polytronic 2007), Tokyo, Japan, January 16-18, pp. 128~132, 2008.
    [43]. H. Onoe, K. Matsumoto, and I. Shimoyama, “Three-dimensional sequential self-assembly of microscale objects,” Small, Vol. 3, No. 8, pp. 1383– 389, 2007.
    [44]. T. Fukushima, T. Konno, T. Tanaka, and M. Koyanagi, “Multichip self-assembly technique on flexible polymeric pubstrate,” 58th Electronic Components and Technology Conference, Florida, USA, pp. 1532-1537, 2008.[45]. K. L. Scott, R. T. Howe, and C. J. Radke, “Model for micropart planarization in capillary-based microassembly,” The 12th International Conference on Solid State Sensors, Actuators and Microsystem, Transducers’03, Boston, USA, June 8~12, 2003.
    [46]. J. Fang, and K. F. Bohringer, “Parallel micro component-to-substrate assembly with controlled poses and high surface coverage,” J. Micromech. Microeng., 16, pp. 721–730,2006.
    [47]. I. Soga, Y. Ohno, S. Kishimoto, K. Maezawa, and T. Mizutani, “Fluid dynamic assembly of semiconductor blocks for heterogeneous integration,” Jpn. J. Appl. Phys., 42(4B), pp. 2226–2229, 2003.
    [48]. W. Zheng, P. Buhlmann, and H. O. Jacobs, “Sequential shape-and-solder-directed self-Assembly of functional microsystems,” Proc. Nat. Acad. Sci. USA, 101, pp. 12814–12817, 2004.
    [49]. W. Zheng, and H. O. Jacobs, “Fabrication of multicomponent microsystems by directed three dimensional self-assembly,” Adv. Funct. Mater., 15, pp. 732–738, 2005.
    [50]. M. Liu, J. G. Zhang, L. V. Ya, and S.-H Xia, “Self-assembly of micro-parts onto Si substrates at liquid-liquid interface,” Chin. Phy. Lett. , 23(1), pp. 42–44, 2006.
    [51]. Q. Ramadan, Y. S. Uk, and K. Vaidyanathan, 2007, “Large scale micro -components assembly using an external magnetic array,” Appl. Phys. Lett., 90, pp. 2502–2504, 2007.
    [52]. J. Snyder, J Chideme, and G. S. W. Craig , ”Fluidic self-assembly of semiconductor devices: A promising new method of mass-producing flexible circuitry,” Jpn. J. Appl. Phys., 41, pp. 4366–4369, 2002.
    [53]. Y. Lu, S. Xia, M. Liu, and J. Zhang, “Dynamic simulation of MEMS self-assembly using capillary force,” Proc. of the 1st IEEE Int. Conference on Nano/Micro Engineered and Molecular Systems, Zhuhai, China, Jan. 18-21, pp. 414-417, 2006.
    [54]. A. O. Tay, H. Li, X. Gao, J. Chen, and V. Kripesh, ” Numerical simulation of capillary and fluid dynamic forces on tiny chips in fluidic self-assembly process,” 7th Int. Conference on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-systems, EuroSimE, 2006.
    [55]. CFD-ACE+ 2006, CFD Research Corporation, Hontsville, Alabama, USA.
    [56]. C. Lin, H. C. Kan, and C. C. Chieng, “Numerical simulation and analysis of fluidic self-alignment process,” The 11th National Computational Fluid Dynamics Conference, Tai-Tung, Taiwan, August 2004.
    [57]. C. Lin, F. G. Tseng, and C. C. Chieng, “Physical mechanisms studies on micropart self-alignment using surface tension forces”, 2nd Integration & Commercialization of Micro & Nanosystems International Conference & Exhibition (MicroNano 2008), Hongkang, China, Jun 3-5, 2008.
    [58]. J. U. Brackbill, D. B. Kothe, and C. Zemach, “A continuum method for modelling surface tension,” J. Comput. Phys., 100, pp. 335-354, 1992.
    [59]. B. R. Martin, D. C. Furnange, T. N. Jackson, T. E. Mallouk, and T. S. Mayer, “Self-alignment of patterned wafers using capillary forces at a water-air interface,” Adv. Funct. Mater., Vol. 11, no. 5, pp. 381-386, 2001.
    [60]. J. M. Kim, K. Yasuda, and K. Fujimoto, “Resin self-alignment process for self-assembly systems,” ASME J. Electron. Packag., 127, pp. 18-24, 2005.
    [61]. C. G. Tsai, C. M. Hsieh, and J. Yeh, “Self-alignment of microchips using surface tension and solid edge,” Sensor Actuat A Phys, Vol. 139, pp. 343-349, 2007.
    [62]. J. M. Kim, Y. M. Shin, and K. Fujimoto, “Dynamic modeling for resin self-alignment mechanism,” Microelectronics Reliability, Vol. 44, pp. 983~992, 2004.
    [63]. M. Kaneda, M. Yamamoto, K. Nakaso, T. Yamamoto, and J. Fukai, “Oscillation of a tilted circular pad on a droplet for the self-alignment process,” Precis. Eng., 31, pp. 177-184, 2007.
    [64]. C. Lin, F. G. Tseng, H. C. Kan, and C. C. Chieng, ”Numerical studies on micropart self-alignment using surface tension forces,” J. Microfluidic and Nanofluidic, doi:10.1007/s10404-008-0294-4, 2008.
    [65]. A. A. Darhuber, S. M. Troian, J. M. Davis, and S. M. Miller, “Selective dip-coating of chemically micropatterned surfaces,” J. Appl. Phys., 88(9), pp. 5119–5126, 2000.
    [66]. C. J. Morris, and B. A. Parviz, ”Micro-scale metal contacts for capillary force-driven self-assembly,” J. Micromech. Microeng., 18, pp. 15022–15031, 2008.
    [67]. C. D. Cooper, and F. C. Alley, Air Pollution Control: a Design Approach, Waveland Press, Prospect Heights, IL, pp. 110–113, 1994.
    [68]. X. J. Zhang, C. C. Chen, R. W. Bernstein, S. Zappe, M. P. Scott, and O. Solgaard, “Microoptical characterization and modelingof positioning forces on drosophila embryos self-assembled in two-dimensional arrays,” J. of Microelectro- mechanical Systems, 14(5), pp. 1187-1197, 2005.
    [69]. Small Parts Inc., http://www.smallparts.com.
    [70]. C. Isenberg, The Science of Soap Films and Soap Bubbles, Dover Publications, Inc., NY, pp. 107-122, 1992.
    [71]. C. Lin, F. G. Tseng, and C. C. Chieng, ”Studies on size and lubricant effects for fluidic self-assembly of microparts on patterned substrate using capillary effect,” ASME J. Electron. Packag., 130, 021005, 2008.
    [72]. H. Grutzeck, “Investigations of the capillary effect for gripping silicon chips,” Microsystem Technologies, 11, pp. 194-203, 2005.
    [73]. K. Sato, K. Lee, M. Nishimura, and K. Okutsu K, “Self-alignment and bonding of microparts using adhesive droplets,” Int. J. of Preci. Eng. and Manuf., Vol. 8, no 2, pp. 75-79, 2007.
    [74]. D. H. Ahn, J. Lee, C. D. Yoo, and Y-S Kim, “Influence of pad shape on self-alignment in electronic packaging,” J. Electronic Materials, Vol. 35, No. 3, pp. 411~415, 2006.
    [75]. A. H. Cannon, Y. Hua, C. L. Henderson, and W. P. King, “Self-assembly for three-dimensional integration of functional electrical components,” J. Micromech. Microeng., Vol. 15, pp. 2172~2178, 2005.
    [76]. C. Lin, F. G. Tseng, and C. C. Chieng, “Target-orienting and size effect alignment using capillary based fluidic self-assembly”, 1st Annual IEEE Intl. Conf. On Nano/Micro Engineered and Molecular Systems, Zhuhai, China, 2F2.3, January 18-21 2006.
    [77]. C. Lin, F. G. Tseng, and C. C. Chieng, “Low energy barrier and large recovery angle of fluidic self-assembly for microparts employing tear-drop shape alignment mark,” The 4th Asia-Pacific Conference on Transducers and Micro/Nano Technologies (APCOT 2008), Tainan, Taiwan, 2008.
    [78]. S. Shet, V. R. Mehta, A. T. Fiory, M. P. Lepselter, and N. M. Ravindra, 2004 “The magnetic field-assisted assembly of nanoscale semiconductor devices: A New Technique,” Journal of The Minerals Metals & Materials Society (JOM), 56, pp. 32-34, 2004.
    [79]. V. Sariola, Q. Zhou, and H. N. Koivo, “Hybrid microhandling: a unified view of robotic handling and self-assembly,” J. Nano Micromechatron doi 10.1007/ s12213-008-0003-0, 2007.
    [80]. K. Maezawa, I. Soga, S. Kishimoto, T. Mizutani, and K. Akamatsu, “A GaAs SOI HEMT fabricated by fluidic self-assembly and its application to an RF-Switch,” IEICE Transactions on Electronics, E91-C(7), pp.1025-1030, 2008.
    [81]. W. Lu and A. M. Sastry,”Self-assembly for semiconductor industry,” IEEE Trans on semiconductor manufacturing, Vol. 20, No. 4, pp. 421-431, 2007.
    [82]. S. W. Lee and R. Bashir, ”Dielectrophoresis and electrohydrodynamics- mediated fluidic assembly of silicon resistors,” Appl. Phys. Letter, Vol. 83, pp. 3833~3835, 2003.
    [83]. J. Dalin, J. Wilde, A. Synodinos, P. Lazarou, and N. Aspragathos, ” Concept for fluidic self-assembly of micro-parts using electro-static forces,” Multi- Material Micro Manufacture, Cardiff University, 2008.
    [84]. S. E. Chung, W. Park, S. Shin, S. A. Lee, and S. Kwon, “Guided and fluidic self-assembly of microstructures using railed microfluidic,” Nat. mat., Vol. 7 , pp.581-587, 2008.
    [85]. M. Krishnan, M. T. Tolley, H. Lipson, and D. Erickson, “Increased robustness for fluidic self-assembly,” Physics of Fluids, 20, 073304, 2008.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE