研究生: |
呂保明 Lu, Pao-Ming |
---|---|
論文名稱: |
利用深度學習中的轉移學習來處理錯誤標記的數據 Utilizing mislabeled data by transfer learning in deep neural networks |
指導教授: |
吳金典
Wu, Chin-Tien 高淑蓉 Kao, Shu-Jung |
口試委員: |
朱家杰
Chu, Chia-Chieh 王夏聲 Wang, Shiah-Sen |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 48 |
中文關鍵詞: | 深度學習 、影像分割 、標記錯誤資料 |
外文關鍵詞: | deep learning, Image segmentation, mislabeled data |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
深度學習對於設備與資料有著非常高的要求[1],其中資料更是模型好壞的核心。然而在實際問題上,我們要獲取標記好的資料是不容易的。在我們的論文中就是希望能解決這類型的問題,儘管手上的資料不一定非常的好,但還是能透過一些方法,得到一個結果不差的模型。
我們的實驗主要是在處理無人機影像與衛星影像的地物分析。這些資料數量不多,且不是這麼容易進行標記。我們透過GoogleAPI尋找類似我們實驗的資料集來進行訓練,然而我們收集的資料也不是這麼理想,有20%-30%的比例是標記錯誤的。
為了解決這個問題,我們藉由[2],[3],[4],[5],[6]..等類神經網路來設計我們的模型架構,並參考了[7], [8] ,[9]等非監督式模型。透過[10]可以先假定我們原始資料所訓練的模型是不差的,並結合blockwise的model來輔助我們修改標記,來解決標記錯誤的問題。為了取得更好的效果,我們將這個方法進行疊代,使得這筆GoogleAPI的資料集提升了3%~5%的準確度,並找到了我們想要的模型。
最後,當我們拿到一筆新的未標記資料時,可以在不使用其他資料集的前提下,只需進行一些簡單的標記,就可以利用我們的模型架構和演算法直接訓練出一個適合的模型,依此來解決難以取得有標記資料的問題。
Deep learning has very high requirements for equipment and materials [1], and the data is the core of the model. However, in practical matters, it is not easy for us to obtain the marked information. In our paper, we hope to solve this type of problem. Although the information we have is not good enough, we can still get a model with good results through some methods.
Our experiments are mainly in image segmentation of unmanned aerial vehicles and satellite imagery. The amount of this information is less and difficult to label, so we use GoogleAPI to find a data set similar to our experiment for training. However, the data we collected is not so ideal, and 20%-30% is labeled incorrectly.
In order to solve this problem, we design our model architecture by [2],[3],[4],[5],[6] and other neural networks, and reference to [7], [8], [9] and other unsupervised models. By [10], we can assume that the model we trained in the original data is not bad, then combine with the block-wise model to assist us in modifying the markup and solve the problem of markup errors. For better results, we use this method to iterate. Then we improved the 3%~5% accuracy in the GoogleAPI dataset and found the model we wanted.
Finally, when we get a new unlabeled dataset, we can use our model architecture and algorithms to directly train a suitable model without using other data sets. In order to solve the problem of difficult to obtain labeled data.
Reference
1. Chen, X.-W. and X. Lin, Big data deep learning: challenges and perspectives. IEEE access, 2014. 2: p. 514-525.
2. Simonyan, K. and A. Zisserman, Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.
3. He, K., et al. Deep residual learning for image recognition. in Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.
4. Long, J., E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. in Proceedings of the IEEE conference on computer vision and pattern recognition. 2015.
5. Ronneberger, O., P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image segmentation. in International Conference on Medical image computing and computer-assisted intervention. 2015. Springer.
6. Lin, G., et al. RefineNet: Multi-path Refinement Networks for High-Resolution Semantic Segmentation. in Cvpr. 2017.
7. Pan, S.J. and Q. Yang, A survey on transfer learning. IEEE Transactions on knowledge and data engineering, 2010. 22(10): p. 1345-1359.
8. Raina, R., et al. Self-taught learning: transfer learning from unlabeled data. in Proceedings of the 24th international conference on Machine learning. 2007. ACM.
9. Dai, W., et al. Eigentransfer: a unified framework for transfer learning. in Proceedings of the 26th Annual International Conference on Machine Learning. 2009. ACM.
10. Rolnick, D., et al., Deep learning is robust to massive label noise. arXiv preprint arXiv:1705.10694, 2017.
11. Parkhi, O.M., A. Vedaldi, and A. Zisserman. Deep face recognition. in BMVC. 2015.
12. Baldi, P. and Y. Chauvin, Neural networks for fingerprint recognition. Neural Computation, 1993. 5(3): p. 402-418.
13. Jean, N., et al., Combining satellite imagery and machine learning to predict poverty. Science, 2016. 353(6301): p. 790-794.
14. Bengio, Y. Deep learning of representations for unsupervised and transfer learning. in Proceedings of ICML Workshop on Unsupervised and Transfer Learning. 2012.
15. Lee, H., et al. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. in Proceedings of the 26th annual international conference on machine learning. 2009. ACM.
16. Hastie, T., R. Tibshirani, and J. Friedman, Unsupervised learning, in The elements of statistical learning. 2009, Springer. p. 485-585.
17. LeCun, Y., Y. Bengio, and G. Hinton, Deep learning. nature, 2015. 521(7553): p. 436.
18. Goodfellow, I., et al., Deep learning. Vol. 1. 2016: MIT press Cambridge.
19. Zhang, S., A.E. Choromanska, and Y. LeCun. Deep learning with elastic averaging SGD. in Advances in Neural Information Processing Systems. 2015.
20. Girosi, F., M. Jones, and T. Poggio, Regularization theory and neural networks architectures. Neural computation, 1995. 7(2): p. 219-269.
21. Simard, P.Y., D. Steinkraus, and J.C. Platt. Best practices for convolutional neural networks applied to visual document analysis. in null. 2003. IEEE.
22. Krizhevsky, A., I. Sutskever, and G.E. Hinton. Imagenet classification with deep convolutional neural networks. in Advances in neural information processing systems. 2012.