研究生: |
鍾隆淵 Chung, Lung-Yuan |
---|---|
論文名稱: |
使用介電濕潤裝置於小鼠之體外生殖 Using EWOD Device for in vitro fertilization of mous |
指導教授: |
饒達仁
Yao, Da-Jeng |
口試委員: |
陳致真
施文彬 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 奈米工程與微系統研究所 Institute of NanoEngineering and MicroSystems |
論文出版年: | 2015 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 90 |
中文關鍵詞: | 介電濕潤晶片 、體外受精 、數位微流體系統 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要以介電濕潤(Electrowetting on dielectric, EWOD)數位微流體晶片做為體外受精胚胎及培養平台,在油浴環境中以電濕潤力操控液珠之功能進行精子微液珠與卵子微液珠之移動與結合,模仿胚胎體內動態之環境,並探討介電濕潤晶片應用於生殖醫學之可行性。
精與卵微液珠滴於油浴介電濕潤晶片,以電極驅動精子與卵液滴之移動與結合。介電濕潤數位微流體平台放置於溫控式活體顯微鏡系統中維持適當細胞成長溫度與氣體濃度,模仿胚胎體內成長之環境,並以高解析度之即時觀測顯微鏡監測精卵結合與細胞成長之情形。實驗分為兩組,靜態培養組及使用介電濕潤晶片混合受精動態培養組。靜態胚培養將卵子液珠與精子液珠手動混合後靜置於油浴介電濕潤晶片;而動態培養組則是利用介電濕潤電極操控其上之精子與卵子微液珠混合受精,並每30分鐘移動受精卵液珠並持續一天,以模擬受精卵由輸卵管中移動至子宮著床之動態過程。
實驗結果發現介電濕潤晶片之動態培養與靜態培養組之精卵胚胎受精機率與細胞發育型態類似,此結果可證實介電濕潤數位微流體系統應用於生殖醫學之精卵結合的可行性。
This paper is to discuss a novel EWOD chip and mouse embryos cultured IVF (in vitro fertilization) as a EWOD chip. EWOD platform placed in temperature-controlled intravital microscopy system and provides temperature and gas concentration required for cell growth, in real time, high resolution microscope observation monitoring the situation of cell growth.
They were divided into two groups, static culture group and dynamic culture group. In dynamic culture group, EWOD chip for oocyte and sperm fertilization combined droplets, moving and observation.The Dynamic group step 1 is to draw HTF medium containing 0.08% pluronic and the drop in the dielectric and humid electrodes on the chip and cover oil. Step 2 is to use dielectric wafer wet sperm droplet beads mixed with sperm in the fluid motion. Step 3 the droplet moved on five EWOD electrodes dynamic culture. The period of each move will take 30 minutes, and every move will be finished within 30 seconds by using the operating voltage of 60V square wave frequency of 500 Hz.
Experimental results show the dynamic culture and static culture group, embryos fertilized embryos similar probability. The results confirm that EWOD systems can be used on fertilized embryos feasibility of reproductive medicine.
[1] R. P. Feynman, "There's plenty of room at the bottom [data storage]," Microelectromechanical Systems, Journal of, vol. 1, pp. 60-66, 1992.
[2] R. Feynman, "Infinitesimal machinery," Microelectromechanical Systems, Journal of, vol. 2, pp. 4-14, 1993.
[3] H. M. S. K. Cho, J. Fowler "Splitting a liquid droplet for electrowetting-based microfluidics," presented at the ASEM International Mechnical Engineering Congress and Exposition, 2001.
[4] M. G. Pollack, et al., "Electrowetting-based actuation of liquid droplets for microfluidic applications," Applied Physics Letters, vol. 77, pp. 1725-1726, 2000.
[5] S. K. Cho, et al., "Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits," Microelectromechanical Systems, Journal of, vol. 12, pp. 70-80, 2003.
[6] H. Moon, et al., "Low voltage electrowetting-on-dielectric," Journal of Applied Physics, vol. 92, pp. 4080-4087, 2002.
[7] L. Yifan, et al., "Room-Temperature Fabrication of Anodic Tantalum Pentoxide for Low-Voltage Electrowetting on Dielectric (EWOD)," Microelectromechanical Systems, Journal of, vol. 17, pp. 1481-1488, 2008.
[8] D. K. G. Michelle Lane, "Embryo culture medium: which is the best?," Best Practice & Research Clinical Obstetrics and Gynaecology, vol. 21, pp. 83-100, 2007.
[9] J. E. Swain, et al., "Thinking big by thinking small: application of microfluidic technology to improve ART," Lab on a Chip, vol. 13, pp. 1213-1224, 2013.
[10] E. M. W. Stephanie Raty, John Davis, Henry Zeringue, David J. Beebe, and S. L. R.-Z. a. M. B. Wheeler, "Embryonic development in the mouse is enhanced via microchannel culture," Lab on a Chip, vol. 4, pp. 186-190, 2004.
[11] J. Melin, et al., "In vitro embryo culture in defined, sub-microliter volumes," Developmental Dynamics, vol. 238, pp. 950-955, 2009.
[12] M. L. a. D. K.Gardner, "Effect of incubation volume and embryo density on the development and viability of mouse embryos in vitro," Human Reproduction, vol. 7, pp. 558-562, 1992.
[13] C. Han, et al., "Integration of single oocyte trapping, in vitro fertilization and embryo culture in a microwell-structured microfluidic device," Lab on a Chip, vol. 10, pp. 2848-2854, 2010.
[14] Derek G. Pyne1, et al.," Automated Verification of Mammalian Embryos on a Digital Microfluidic device" MEMS 2014 conference, p.p.829
[15] Au, S. H., Kumar, P. & Wheeler, A. R. . A New Angle on Pluronic Additives: Advancing Droplets and Understanding in Digital Microfluidics. Langmuir 27, 8586-8594,2011
[16] Luk, V. N., Mo, G. C. H. & Wheeler, A. R. (2008). Pluronic Additives: A Solution to Sticky Problems in Digital Microfluidics. Langmuir 24, 6382-6389.
[17] Witters, D., Vergauwe, N., Vermeir, S., Ceyssens, F., Liekens, S., Puers, R. & Lammertyn, J. (2011). Biofunctionalization of electrowetting-on-dielectric digital microfluidic chips for miniaturized cell-based applications. Lab on a Chip 11, 2790-2794.
[18] Barbulovic-Nad, I., Au, S. H. & Wheeler, A. R. (2010). A microfluidic platform for complete mammalian cell culture. Lab on a Chip 10, 1536-1542.
[19] Srigunapalan, S., Eydelnant, I. A., Simmons, C. A. & Wheeler, A. R. (2012). A digital microfluidic platform for primary cell culture and analysis. Lab on a Chip 12, 369-375.
[20] sukada, K-i. Kudoh, M. Budiman, A. Yamamoto, T. Higuchi, M. Kobayashi, K. Sato, K. Oishi, and K. Lidia, "Development of Automated Nuclear Transplantation System," Mamm Ova Res, vol. 18, pp. 106-109, 2001.
[21] G. Fuhr, T. Müller, V. Baukloh, and K. Lucas, "High-Frequency Electric Field Trapping of Individual Human Spermatozoa," Human Reproduction, vol. 13, pp. 136-141, 1998.
[22] H. Y. Tseng, D. J. Yao, C. H. Tien, C. J. Li, and H. Y. Huang, "Using Control Microfluidic System to Enhance the Sperm Motility Sorting Efficiency," IEEE 6th International Conference on Nano/Molecular Medicine and Engineering (NANOMED), pp. 47-50, 2012.
[23] H. Y. Huang, T. L. Wu, H. R. Huang, C. J. Li, H. T. Fu, Y. K. Soong, M. Y. Lee, and D. J. Yao, "Isolation of Motile Spermatozoa with a Microfluidic Chip Having a Surface-Modified Microchannel," Journal of Laboratory Automation, vol. 19, pp. 91-99, 2014.
[24]S. Raty, E. M. Walters, J. Davis, H. Zeringue, D. J. Beebe, S. L. Rodriguez-Zas, and M. B. Wheeler, "Embryonic Development in the Mouse ss Enhanced Via Microchannel Culture," Lab on a Chip, vol. 4, pp. 186-190, 2004.
[25]J. E. Swain, and G. D. Smith, "Advances in Embryo Culture Platforms: Novel Approaches to Improve Preimplantation Embryo Development Through Modifications of the Microenvironment. Human Reproduction Update. vol. 17, pp. 541-557, 2011.
[26]Y. S. Heo, L. M. Cabrera, C. L. Bormann, C. T. Shah, S. Takayama, and G. D. Smith, "Dynamic Microfunnel Culture Enhances Mouse Embryo Development and Pregnancy Rates," Human Reproduction, vol. 25, pp. 613-622, 2010.
[27]W. L. Ong, J. S. Kee, A. A. Ajay, N. Ranganathan, K. C. Tang, and L. Yobas, "Development of a Microchip-based Fertilization and Cultivation System for in Vitro Production of Blastocysts, MicroTAS, 2006.
[28]H. C. Zeringue, I. K. Glasgow, D. J. Beebe, J. T. Lyman, and M. B. Wheeler, " Micro Fluidic Single Embryo Culture Systems in PDMS," 21st Annual Conference and the 1999 Annual Fall Meetring of the Biomedical Engineering Society (BMES/EMBS), vol. 852, pp. 851, 1999.
[29]Y. Fukui, E. S. Lee, and N. Araki, "Effect of Medium Renewal During Culture in Two Different Culture Systems on Development to Blastocysts from In Vitro Produced Early Bovine Embryos," Journal of Animal Science, vol. 74, pp. 2752-2758, 1996.
[30]T. Otoi, L. Willingham, T. Shin, D. C. Kraemer, and M. Westhusin, "Effects of Oocyte Culture Density on Meiotic Competence of Canine Oocytes," Reproduction, vol. 124, pp. 775-781, 2002.
[31]M. Lane, and D. K. Gardner, "Effect of Incubation Volume and Embryo Density on the Development and Viability of Mouse Embryos In Vitro," Human Reproduction, vol. 7, pp. 558-562, 1992.
[32]H. Bagis, and H. O. Mercan, "Effect of Culture Medium Volume on the Development and Viability of Microinjected or Noninjected One-Cell Hybrid and CD-1 Strain Mouse Embryos," Turk J Vet Anim Sci, pp. 507-512, 2004.
[33]A. K. Malekshah, and A E. Moghaddam, "The Effect of Culture Medium Volume on In Vitro Development of Mouse Embryos," Iranian Journal of Reproductive Medicine, vol. 3, pp. 79-82, 2005.
[34]B. Heindryckx, A. Rybouchkin, V. D. E. Josiane, and M. Dhont, "Effect of Culture Media on In Vitro Development of Cloned Mouse Embryos," Cloning, vol. 3, pp. 41-50, 2001.
[35]M. A. Ibrahim, H. I. Al-Ahmad, and W. H. Mohammed, "The Effect of Different Culture Media on In Vitro Fertilization of Mice", Journal of Al-Nahrain University, vol. 13, pp. 147-150, 2010.
[36] S.-K. Fan,* P.-W. Huang, T.-T. Wang and Y.-H. Peng "Cross-scale electric manipulations of cells and droplets by frequency-modulated dielectrophoresis and electrowetting", Journal of Lab on a Chip, vol. 8, pp1325–1331, 2008.