簡易檢索 / 詳目顯示

研究生: 張繼遠
Chi-yuan Chang
論文名稱: 以無電鍍製備鈀膜及其純化氫氣之應用
Preparation of Highly Selective Palladium Membranes for Hydrogen Purification by Electroless Plating
指導教授: 趙桂蓉
Kuei-jung Chao
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 91
中文關鍵詞: 鈀膜氫氣純化不□鋼管選擇率
外文關鍵詞: Palladium membrane, hydrogen purification, stainless steel tube, selectivity
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    本研究探討多孔性不□鋼(PSS)膜管為基材之金屬鈀複合膜管的製備以及特性鑑定。製備方法大致上可分為二個階段:不□鋼管的修飾和金屬鈀膜的沈積。製備的樣品則以氬氣通透性及氫氮選擇率來鑑定其特性。
    修飾的主要目的即為平整化膜管的表面。PSS膜管經表面磨平、清洗,再以氧化鋁粉填充其表面上的孔洞並被覆Ludox二氧化矽後,可由光學顯微鏡觀察得知修飾後的表面已漸漸平整。並由氬氣通透性的實驗發現修飾後的PSS膜管仍具有很高的通透性,有利於氣體在修飾後的PSS膜管中擴散。
    金屬鈀膜是以無電鍍的方式沈積在修飾過的PSS膜管上。首先,膜管以具有高度地催化活性的鈀奈米膠體溶液活化。此膠體能使後續鍍上的鈀膜產生向下紮根的結構,故附著力可大為提升。結合滲透作用的無電鍍使金屬鈀膜更趨緻密,其緻密程度可由鈀膜呈氣通透性得知。再者,緻密化之鈀膜選擇率在350 °C 及20 PSI的壓差下,H2對N2的通透選擇率可達到2070,同時氫氣的流量到達195 ml/min (約14 m3/m2.min.atm0.5)


    Abstract
    The preparation and characterization of dense Pd composite membrane on porous stainless steel (PSS) tube are reported. The preparation comprises two stages: modification of PSS tubular support and deposition of Pd membrane. The characterization includes argon permeability and selectivity of hydrogen to nitrogen.
    The purpose of modification was to smooth the surface of PSS tube. The polished and cleaned PSS tubular membrane was modified by filling surface pores with alumina powders and coating with colloidal silica. After the modification, the surface was smooth observed by optical microscopy.
    The Pd membrane was deposited on modified PSS tube by electroless plating. Before plating, the tube was activated by Pd nano-particles which has highly catalytic activity and has been found to inhance the adhesion of Pd membrane on modified PSS support. Electroless plating combined with osmosis was adopted to prepare the Pd membrane. The resulting Pd/PSS composite filters possess vert low argon permeability and the H2/N2 selectivity up to 2070 at 350 °C at the pressure difference of 20 PSI with the hydrogen flux of 195 ml/min (ca 14 m3/m2.min.atm0.5).

    Contents 博碩士論文授權書 I 指導教授推薦書 II 考試委員審定書 III Abstract IV 摘要 V 謝誌 VI Chapter 1. Introduction 1 1.1 Hydrogen Demand 1 1.2 Hydrogen Separation through Palladium Membrane 5 1.3 Preparation of Palladium Membrane 12 1.4 Permeability of a Porous Media 27 1.5 Purpose of This Research 32 Chapter 2. Experimental 33 2.1 Chemicals 33 2.2 Overview of experimental section 35 2.3 Surface Cleaning of PSS Tube 36 2.4 Surface Planarization of PSS Tubes 37 2.5 Colloid Coating 43 2.6 Deposition of Palladium Membranes 45 2.7 Characterization 50 Chapter 3. Results and Discussion 54 3.1 Surface Modification of PSS Tubes 54 3.2 Peeling of Pd membrane 66 3.3 Permeability through Pd membranes 71 3.4 Performance of Pd membranes 79 3.5 Characteristic of Pd Nano-colloids 85 Chapter 4. Conclusion 91 Figure Contents Figure 1.1 Hydrogen diffusion through palladium film. 6 Figure 1.2 H/Pd phase diagram 10 Figure 1.3 The scheme for the electroless plating combined with osmosis. 20 Figure 1.4 MOCVD 22 Figure 1.5 Magnetron sputtering 23 Figure 1.6 Electroplating 25 Figure 1.7 Composite membrane 30 Figure 2.1 The scheme of preparation of Pd composite membranes 35 Figure 2.2 The schematic diagram of planarization 38 Figure 2.3 The set-up of the dip-coating 42 Figure 2.4 The set-up for Pd colloidal coating. 47 Figure 2.5 The set-up of electroless plating 49 Figure 2.6 The set-up for the measurement of permeability. 51 Figure 2.7 The set-up for the measurement of selectivity. 52 Figure 3.1 The Surface of original PSS tube 55 Figure 3.2 The Surface of polished PSS tube 55 Figure 3.3 The difference between polished surface and original surface 55 Figure 3.4 The Cleaned surface 56 Figure 3.5 The OM picture of PSS surface after the growth of MFI membrane 58 Figure 3.6 The OM picture of PSS surface after coating of colloidal MFI membrane 58 Figure 3.7 The OM picture of PSS surface after coating with colloidal MFI membrane and polish posttreatment 59 Figure 3.8 The OM picture of colloidal silica membrane after calcination 60 Figure 3.9 The argon permeability of Tube A 61 Figure 3.10 The argon permeability of Tube B 61 Figure 3.11 The PSS tube filled with alumina powders 62 Figure 3.12 The argon permeability of modified PSS tubes (the values of estimated pore sizes are listed in the parentheses) 63 Figure 3.13 The PSS surface after calcination 64 Figure 3.14 The argon permeability of modified PSS tubes 65 Figure 3.15 Time period of preparation 65 Figure 3.16 The peeling of Pd membrane 66 Figure 3.17 The peeling area 67 Figure 3.18 The anchoring effect 68 Figure 3.19 The line scan of EPMA 69 Figure 3.20 The argon permeability of modified PSS tubes 73 Figure 3.21 The relation between the permeability of Pd membrane and pore size of substrate 78 Figure 3.22 The selectivity and hydrogen flux of each tube 79 Figure 3.23 Hydrogen flux through Pd composite membrane 82 Figure 3.24 The result of the regression analysis 84 Figure 3.25 The path of x-ray 86 Figure 3.26 The original PXRD spectrum of Pd nanocolloids 86 Figure 3.27 The corrected PXRD spectrum 87 Figure 3.28 The differences of the peak positions at different angle 88 Figure 3.29 The lattice constant 89 Table Captions Table 1.1 Comparison of different fuel cells 2 Table 1.2 Use of fuel cells1 2 Table 1.3 The thickness of Pd membrane and n value in literature 9 Table 1.4 The composition of the activation bath reported by Li et al 14 Table 1.5 The composition of the activation bath reported by Ma et al 15 Table 1.6 The composition of the activation bath reported by Varma et al 15 Table 1.7 The compositions of the plating bath 17 Table 1.8 The compositions of the plating bath reported by Hughes et al 18 Table 1.9 The compositions of the plating bath reported by Ma et al 18 Table 1.10 The calculation of the effective concentration in the plating bath 20 Table 2.1 The composition of the plating bath. 48 Table 3.1 Procedures of each tube 70 Table 3.2 The Ar permeability of Pd/Modified PSS 71 Table 3.3 The Ar permeability of Pd membranes 75 Table 3.4 Rise in permeability after heat treatment at 350 °C 77 Table 3.5 The selectivity and hydrogen flux at different pressure 80 Table 3.6 The result of calculation 83 Table 3.7 The calculation of PXRD 90

    1. Rennie, J.; Scientific American Chinese Version, 2002, No. 10, Dec.
    2. Quirk, M.; Serda, J.; “Semiconductor Manufacturing Technology”, 2001, Chapter 2
    3. Kushmerick, J.G.; Kandel, S.A.; Han, J.A. J. Phys. Chem. B 2000, 104, 2980-2988
    4. Paturzo L.; Basile, A. Ind. Eng. Chem. Res. 2002, 41, 1703-1710
    5. She, Y.; Han, J.; Ma, Y. H. Catalysis Today 2001, 67, 43-53.
    6. Hollein, V.; Thornton, M.; Quicker, P.; Dittmeyer, R. Catalysis Today 2001, 67, 33-42.
    7. Paglieri, S. N.; Foo, K. Y.; Way, J. D.; Collins, J. P.; Harper-Nixon, D. L. Industrial and Engineering Chemistry Research 1999, 38, 1925.
    8. Lopez, N.; Norskov, J. K. Surface Science 2001, 477, 59
    9. Mardilovich, I.P; Engwall, E.; Ma, Y.H.; Desalination 2002, 144(1-3), 85-89
    10. Li, A.; Liang, W.; Hughes, R.; Catalysis Today 2000, 56, 45-51
    11. Wu, C.W.; “Study on the preparation of Pd/Ag alloy membrane tube and simulating the structure” Master Thesis of Department of Chemistry Engineering in National Tsing Hua University, Taiwan 2003, P.54
    12. Nam, S.E.; Lee, K.H.; J. Membrane Sci. 2000, 170(1), 91-99
    13. Yeh, C.S.; “Hydrogen Separation of Ag Tube Coated with Pd-Ag membrane” Master Thesis of Department of Materials Science and Engineering in National Tsing Hua University, 2002, P.9
    14. Stocker, J.; Whysall, M. et al; "30 Years of PSA Technology for Hydrogen Purification" Universal Oil Products 1998 July 2818
    15. Heung, L. K.; “Separation Using Encapsulated Metal Hydride” Westinghouse Savannah River Company (USA), 2002, 00558
    16. Uemiya, S.; Sato, N.; Anto, H., et al; J. Membrane Sci. 1991, 56 (3), 303-313
    17. Uemiya, S.; Matsuda, T.; Kikuchi, E.; J. Membrane Sci. 1991, 56 (3), 315-325
    18. Govind, R.; Atnoork, D.; Ind. Eng. Chem. Res. 1991, 30(3), 591-594
    19. Shu, J.; Grandjean, B.P.A.; Ghali, E.; et al; J. Membrane Sci. 1993, 77(2-3), 181-195
    20. Mardilovich, P.P.; She, Y.; Ma, Y.H., AIChE J. 1998, 44(2), 310-322
    21. Lee, C.L.; Wan, C.C.; Wang, Y.Y.; J. Eelectrochem. Soc. 2003,150(3), C125-C130
    22. Wang, Y.H.; Wan, C.C.; Plating and Surface Finishing 1982, August, 59-61
    23. Lee, C.L.; Wan, C.C.; Wang, Y.Y.; Adv. Funct. Mater. 2001, 11(5), 344-347
    24. Mallory, G.O.; Hajdu, J.B. et al; “Electroless Plating: Fundamentals And Applications”, 1990, 421
    25. Yeung, K.L.; Sebastien, J.M.; Varma, A.; Catalysis Today 1995, 25, 231-236
    26. Chen, B.H.; Hong, L.; Ko, T.M. et al; Ind. Eng. Chem. Res. 2002, 41, 2668-2678
    27. Li, Z.Y.; Maeda, K.; Kusakabe, K. et al; J. Membrane Sci. 1993, 78, 247
    28. Kainourgiakis, M.E.; Stubos, A.K.; Konstantinou, N.D. et al; J. Membrane Sci. 1996, 114, 215-225
    29. Cheng, S.L.; “孔洞性氧化矽管狀膜” Master Thesis of Department of Chemistry in National Tsing Hua University, Taiwan 2002, Chap. 2, P.11-14
    30. Kao, C.H.; “MFI沸石薄膜的合成、鑑定與應用” Master Thesis of Department of Chemistry Engineering in National Tsing Hua University, Taiwan 2000, P.23-34

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE