研究生: |
劉家瑋 Liu, Chia-Wei |
---|---|
論文名稱: |
金屬有機磷微孔材料之合成與性質研究 Synthesis and Properties of Microporous Metal Phosphonate Materials. |
指導教授: |
王素蘭
Wang, Sue Lein |
口試委員: |
黃暄益
Huang, Hsuan-Yi 林嘉和 Lin, Chia-Her |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 57 |
中文關鍵詞: | 有機磷 、孔洞材料 、性質鑑定 |
外文關鍵詞: | phosphonate, pillar-layer |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用中溫中壓水熱法,合成出三個新穎的金屬有機磷結構(A1~A3)。A1藉由鋅與Nitrilotri(methylphosphonic acid) (ATMP)的有機磷,以4,4- bipyridine (BPY)作為配位基所構成的三維結構,A2及A3則是鋅與N-(Phosphonomethyl) iminodiacetic acid hydrate (PMIDA)的有機磷配合BPY及Isonicotinic acid (PCA)作為配位基所構成二維 (A2)及三維 (A3)的結構。過往文獻中還未利用此兩種有機磷合成出具孔洞性之結構,而在此系列首度利用ATMP及PMIDA合成出三個具有孔洞性質之結構,因此皆有測量其氣體吸附的能力。所有化合物的鑑定方式都是以單晶X 光繞射儀收集數據後進行結構解析,並進行後續性質的研究。
A1化學式為[Zn6(ATMP)2(BPY)3]·2H2O。其結構是由鋅與ATMP組成二維無機層,在藉由BPY作為配位基連接無機層,形成三維的結構。並參考有機磷MOF文獻,發現可以藉由酯化反應來限制有機磷配位數的策略,進而引導出特殊的孔洞。因此本研究參考此想法,選擇直接以-COOHCOOH COOH取代 -H2PO 3,在採用此策略後將有機磷ATMP改為PMIDA而得到A2及A3兩個結構,其化學式分別為: [Zn28(PMIDA)12(PCA)6(BPY)8]·(SO4)·8H2O (A2); Zn4(PMIDA)2(bpy) (A3)。A2為一個二維層狀化合物,由鋅與PMIDA組成無機層,而兩個無機層間藉由PCA及BPY兩種配位基相互連接,形成二維的有機無機複合層,而複合層之間是以凡德瓦力堆疊而成;A3為三維結構,以金屬鋅與PMIDA組成二維無機層,並藉由BPY作為配位基連接無機層。
A1~A3皆首度利用ATMP及PMIDA得到具有孔洞性的材料,其中A1因結構中有一半的空間為小孔洞,使其不利於二氧化碳的吸附,藉由改變A1有機磷上的官能基,策略性的改變結構中的孔洞模式,A2在無機層中引導出孔洞並且其CO2吸附能力提升至23.1 cm3/g,而A3則是在BPY間得到更大的通道在298K下吸附達到24.8 cm3/g,近一步了解這種策略性改變有機磷官能基的想法,可供未來設計孔洞材料時的一個值得參考方向。
This thesis utilized the hydrothermal method to synthesize three organic- incorporated zinc phosphonates (A1 to A3). These three compounds used 4,4- bipyridine (BPY)、Nitrilotri(methylphosphonic acid)(ATMP)、N-(Phosphonomethyl) iminodiacetic acid hydrate (PMIDA)、Isonicotinic acid(PCA) as ligands to form 2-D (A2), 3-D(A1 and A3) structures. All compounds were characterized by single crystal X-ray diffraction. The gas adsorption properties were measured for A1 to A3.
The formulas of A1 is [Zn6(ATMP)2(BPY)3]·2H2O, respectively. Zinc and ATMP polyhedral in the structure of A1 were connected together to form edge-sharing 6-ring sheet. These sheets are linked by BPY to form a 3-D structure. To enhance the porous and diversity of structure, we changed the phosphonate PIMDA in the reaction, resulting in the formation of A2 and A3, whose formulas are [Zn28(PMIDA)12(PCA)6(BPY)8](SO4)·8H2O and Zn4(PMIDA)2(bpy). A2 is 2-D framework, which is built up with zinc phosphonate layer and organic linkers acting as pillars connecting two inorganic layers to form an organic-incorporated layer. Organic-incorporated layers interact through van der Waals' force. A3 is a neutral 3-D framework, which is built up with zinc phosphonate layers and BPY acting as pillars connecting adjacent inorganic layers.
A1 to A3 are porous materials vary in terms of their CO2 adsorption. Because the half space were occupied by small pores, the CO2 adsorption of A1 is 9.98 cm3/g at 298 K. By the strategy, we change the functional group -PO3 into -COOH of the phosphonate . After change ATMP into PMIDA, A2 structure lead porous in the inorganic layer, and A3 structure lead the more space in the organic layer. This series is the first example of porous metal phosphonate materials with ATMP and PMIDA.
1. Maspoch, D.; Ruiz-Molina, D.; Veciana, J. Chem. Soc. Rev., 2007, 36, 770.
2. Wilson, S. T.; Lok, B. M.; Messina, C. A.; Cannan, T. R.; Flanigen, E. M. J. Am. Chem. Soc., 1982, 104, 1146.
3. Moore, P. B.; Shen, J. Nature, 1983, 306, 356.
4. Davis, M. E.; Saldarriaga; Montes, C.; Garces, J.; Crowder, C. Nature, 1988, 331, 698.
5. Estermann, M.; McKusker, L. B.; Baerlocher, C.; Merrouche, A.; Kessler, H. Nature, 1991, 352, 320.
6. Huo, Q.; Xu, R.; Li, S.; Ma, Z.; Thomas, J. M.; Jones, R. H.; Chippindale, A. M. J. Chem. Soc. Chem. Commun. 1992, 875.
7. Zhou, Y.; Zhu, H.; Chen, Z.; Chen, M.; Xu, Y.; Zhang, H.; Zhao, D.
Angew. Chem. Int. Ed. 2001, 40, 2166.
8. Liang, J.; Li, J.; Yu, J.; Chen, P.; Fang, Q.; Sun, F.; Xu, R. Angew. Chem. Int. Ed. 2006, 45, 2546.
9. Yang, Y.; Li, N.; Song, H.; Wang, H.; Chen, W.; Xiang, S. Chem. Mater. 2007, 19, 1889.
10. Zhao, L.; Li, J.Y.; Cheri, P.; Xu, R. Chem. Mater. 2008, 20, 17.
11. Doran, M. B.; Norquist, A. J.; O’Hare, D. Chem. Commun. 2002, 2946.
12. Bull, I.; Wheatley, P. S.; Lightfoot, P.; Morris, R. E.; Sastre, E.; Wright, P. A. Chem. Commun. 2002, 1180.
13. Altrecht-Schmitt, T. E. Angew. Chem. Int. Ed. 2005, 44, 4836.
14. Zhou, Y.; Zhu, H.; Chen, Z.; Chen, M.; Xu, Y.; Zhang, H.; Zhao, D. Angew. Chem. Int. Ed. 2001, 40, 2166.
15. Plevert, J.; Gentz, T. M.; Laine, A.; Li, H.; Young, V. G.; Yaghi, O. M.; O’Keeffe, M. J. Am. Chem. Soc. 2001, 123, 12706.
16. Zou, X.; Conradsson, T.; Klingstedt, M.; Dadachov, M.S.; O’Keeffe, M. Nature 2005, 437, 716.
17. Wessels, T.; Baerlocher, C.; McCusker, L. B.; Creyghton, E. J. J. Am. Chem. Soc. 1999, 121, 6242.
18. Burton, A.; Elomari, S.; Chen, C. Y.; Ronald, C. M.; Chan, I. Y.; Bull, L. M.; Kibby, C.; Harris, T. V.; Zones, S. I.; Vittoratos, E. S. Chem. Eur. J. 2003, 9, 5737.
19. Strohmaier, K. G.; Vaughan, D. E. W., J. Am. Chem. Soc. 2003, 125, 16035
20. Wang, M. S.; Guo, G. C.; Chen,W. T.; Xu, G.; Zhou,W. W.; Wu, K. J.; Huang, J. S. Angew. Chem., Int. Ed. 2007, 46, 3909.
21. Boy, I.; Stowasser, F.; Schafer, G.; Kniep, R. Chem. Eur. J. 2001, 7, 834.
22. Zhu, J.; Bu, X.; Feng, P.; Stucky, G. D. J. Am. Chem. Soc. 2000, 122, 11563.
23. Halasyamani, P. S.; Walker, S. M.; O’Hare, D. J. Am. Chem. Soc. 1999, 121, 7415.
24. Eddaodi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O’Keeffe, M.; Yaghi, O. M. Science. 2002, 295, 469.
25. Cote, A. P.; Benin, A. I.; Ockwig, N. W.; O’Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Science. 2005, 310, 1166.
26. Wang, B.; Cote, A. P.; Furukawa, H.; O’Keeffe, M.; Yaghi, O. M. Nature. 2008, 453, 207.
27. Murugavel, R.; Choudhury, A.; Walawalkar, M.; Pothiraja, G. R.; Rao, C. N. R. Chem. Rev. 2008, 108, 3549
28. H.Li, M.Eddaoudi, M. O'Keeffe, O. M. Yaghi, Nature, 1999, 402, 276.
29. D. Maspoch, D. Ruiz-Molina, J. Veciana, Chem. Soc. Rev. 2007, 36, 770.
30. Gabriel Lapidus, Donald Barton, Peter E. Yankwich, Journal of Physical Chemistry 1966, 70, 407.
31. C. H. Lin, S. L. Wang, K. L. Lii, J. Am. Chem. Soc. 2001, 123, 4649.
32. Y. C. Liao, F. L. Liao, W. K. Chang, S. L. Wang, J. Am. Chem. Soc. 2004, 126, 1320.
33. Y. H. Liao, Y. C. Jiang, S. L. Wang, J. Am. Soc. 2004, 127, 12794.
34. Y. C. Liao, C. H. Lin, S. L. Wang, J. Am. Soc. 2005, 127, 9986.
35. Y. L. Lai, K. H. Lii, S. L. Wang, J. Am. Soc. 2007, 129, 5350.
36. Y. C. Yang, S. L. Wang, J. Am. Soc. 2008, 130, 1146.
37. P. C. Jiang, Y. C. Yang, Y. C. Lai, Y. C. Liu, S. L. Wang, Angew. Chem Int. Ed. 2009, 48, 742.
38. S. H. Huang, C. H. Lin, W. C. Wang, S. L. Wang, Angew. Chem. Int. Ed. 2009, 48, 6124.
39. P. C. Jiang, N. T. Chuang, S. L. Wang, Angew. Chem. Int. Ed. 2010, 49, 4200.
40. S. H. Huang, S. L. Wang, Angew. Chem. Int. Ed. 2011, 50, 5319.
41. Y. C. Chang, S. L. Wang, J. Am. Chem. Soc. 2012, 134, 9848.
42. H. Y. Lin, C. Y. Chin, H. L. Huang, W. Y. Huang, M. J. Sie, L. H. Huang, Y. H. Lee, S. L. Wang, Science, 2013, 339, 811.
43. H. L. Huang, S. L. Wang, Angew. Chem. Int. Ed. 2015, 54, 965.
44. M. J. Sie, C. H. Lin, S. L. Wang, J. Am. Chem. Soc. 2016, ASAP.
45. Christopher A. Trickett, Kevin J. Gagnon, Seungkyu Lee, Felipe Gándara, Hans-Beat Bürgi, Omar M. Yaghi, Angew. Chem. Int. Ed. 2015, 54, 11162.
46. J. Li, L. Li, J. Liang, P. Chen, J. Yu, Y. Xu, R. Xu, Cryst. Growth & Des. 2008, 8 , 2318.
47. C. H. Lin, S. L. Wang, K. H. Lii, J. Am. Chem. Soc. 2001, 123, 4649
48. Y. C. Liao, F. L. Liao, W. K. Chang, S. L. Wang, J. Am. Chem. Soc. 2004, 126, 1320.
49. Y. C. Liao, Y. C. Jiang, S. L. Wang, J. Am. Chem. Soc. 2005, 127, 12794.
50. Y. C. Liao, C. H. Lin, S. L. Wang, J. Am. Chem. Soc. 2005, 127, 9986.
51. Y. L. Lai, K. H. Lii, S. L. Wang, J. Am. Chem. Soc. 2007, 129, 5350.
52. 王素蘭,科儀新知,民國九十四年二月第二十六卷第四期
53. APEX II software package; Bruker AXS, Madison, WI, 2008.
54. (a) A. L. Spek, PLATON, University of Utrecht, Utrecht, Netherlands, 1999; b) Spek, L. Acta Crystallogr. 1990, A46, 34.