簡易檢索 / 詳目顯示

研究生: 廖子嫻
Lian, Zi-Xian
論文名稱: 引入Poly(γ-glutamic acid)於Chitosan/siRNA奈米微粒對細胞胞飲及基因抑制之影響
Effects of Incorporation of Poly(γ-glutamic acid) in Chitosan/siRNA Nanoparticles on Cellular Uptake and Gene Silencing
指導教授: 宋信文
Sung, Hsing-Wen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 56
中文關鍵詞: 幾丁聚醣聚麩胺酸核醣核酸
外文關鍵詞: Chitosan, Poly(γ-glutamic acid), siRNA
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    核醣核酸干擾(RNA interference; RNAi)為近年發展的技術,其對於基因抑制方面具有高效性和專一性,為研究基因功能的重要工具之ㄧ。這項新技術可以運用來治療各種疾病和癌症,進而達到抑制該癌症細胞生長或是關閉某些不良基因表現。目前有很多傳遞siRNA之方法,其中非病毒型基因載體擁有許多優點,例如低免疫性和低致病性。這些優點對於傳遞基因到生物體有很好的安全考量。本研究將利用[Poly(γ-glutamic acid)](γ-PGA)引入至Chitosan(CS)/siRNA奈米微粒之組成配方中,探討其改善siRNA傳遞效率和抑制特定基因的效果。實驗結果得知引入γ-PGA之奈米微粒具有穩定包覆siRNA之能力,且其無論在粒徑大小或表面電荷的數值分布上皆較無γ-PGA之奈米微粒來的均一。透過電泳分析及流式細胞儀分析數據顯示,引入γ-PGA之奈米微粒可穩定包覆siRNA及增加胞飲效率。而以冷光儀分析冷光蛋白基因抑制效果可知引入γ-PGA後之CS奈米微粒,對抑制基因表現亦有提升的效果,可使冷光蛋白基因之抑制效率提升18-30%;此外,亦可由共軛焦顯微鏡發現綠色螢光蛋白被抑制的效果,隨著γ-PGA的引入而有提升現象。以上結果證實了,引入γ-PGA所形成之CS奈米微粒可以做為攜帶siRNA之載體且更有效率。


    目錄 摘要 I 目錄 II 圖目錄 V 表目錄 VI 第一章 前言 1 1.1 核醣核酸干擾(RNA interference; RNAi)之發展 1 1.1.1 核醣核酸干擾之萌芽 1 1.1.2 核醣核酸干擾之機制 2 1.1.3 核醣核酸干擾之醫療應用 4 1.2 核醣核酸之傳遞方式與系統 5 1.3 幾丁聚醣 (Chitosan; CS) 7 1.4 聚麩胺酸(γ-poly-glutamic acid; γ-PGA) 8 1.5 研究動機與目的 8 第二章 CS/siRNA 奈米微粒之最佳化實驗 10 2.1 研究目的 10 2.2 材料與方法 10 2.2.1 低分子量之幾丁聚醣製備 10 2.2.2 siRNA種類 12 2.2.3 不同電荷比之奈米微粒製備及電泳分析 12 2.2.3.1 不同電荷比之CS/siRNA奈米微粒製備 12 2.2.3.2 電泳分析 12 2.2.4 細胞培養 13 2.2.5 奈米微粒之轉染 13 2.2.5.1 奈米微粒對細胞之毒性分析 14 2.2.5.2 細胞對奈米微粒之胞飲效率 14 2.2.6 共軛焦螢光顯微鏡之影像分析 15 2.3 實驗結果與討論 15 2.3.1 低分子量幾丁聚醣 15 2.3.2 CS/siRNA奈米微粒之電泳分析結果 16 2.3.3 奈米微粒轉染實驗結果 17 2.3.3.1 細胞毒性分析 17 2.3.3.2 細胞胞飲效率 18 2.3.4 共軛焦顯微鏡之影像分析 18 2.4 結論 20 第三章 CS/siRNA奈米微粒抑制基因表現 21 3.1 研究目的 21 3.2 材料與方法 21 3.2.1 奈米微粒之粒徑及電荷 21 3.2.2 表現綠色螢光蛋白及冷光蛋白之人類纖維母細胞株HT-1080之建立 21 3.2.3 CS/siRNA奈米微粒抑制基因表現之時間趨勢實驗 23 3.2.4 不同轉染時間下奈米微粒對抑制冷光蛋白基因表現之效率分析實驗 23 3.2.5 共軛焦螢光顯微鏡之影像分析 24 3.3 實驗結果與討論 24 3.3.1 奈米微粒之粒徑大小及表面電荷分佈 24 3.3.2 奈米微粒抑制基因表現之時間趨勢結果 25 3.3.3 不同轉染時間下之基因受抑制表現結果 26 3.3.4 共軛焦螢光顯微鏡之影像分析 28 3.4 結論 30 第四章 引入聚麩胺酸(γ-PGA)於奈米微粒之最佳化 31 4.1 研究目的 31 4.2 材料與方法 31 4.2.1 低分子量聚麩胺酸(γ-PGA)之製備 31 4.2.2不同電荷比之奈米微粒製備及其特性分析 32 4.2.2.1 不同電荷比之奈米微粒製備 32 4.2.2.2 電泳分析 32 4.2.2.3 奈米微粒之粒徑大小及表面電荷 33 4.2.3 細胞培養 33 4.2.4 不同電荷比之奈米微粒與轉染時間差異對細胞之影響 33 4.2.4.1 胞飲效率之分析 33 4.2.4.2 基因受抑制表現之效率分析 34 4.2.5 不同電荷比之奈米微粒對細胞毒性之分析 35 4.2.6 共軛焦螢光顯微鏡之影像分析 35 4.3 實驗結果與討論 36 4.3.1 不同電荷比之奈米微粒特性 36 4.3.1.1 電泳分析 36 4.3.1.2 粒徑大小及表面電荷 37 4.3.2 不同電荷比之奈米微粒及轉染時間差異對細胞之影響 38 4.3.2.1 胞飲效率分析結果 38 4.3.2.2 基因受抑制表現之效率分析結果 40 4.3.3 不同電荷比奈米微粒之毒性分析結果 42 4.4 結論 44 第五章 引入γ-PGA之奈米微粒抑制基因表現之效率 45 5.1 研究目的 45 5.2 材料與方法 45 5.2.1 添加γ-PGA之奈米微粒抑制基因表現之時間趨勢實驗 45 5.2.2 共軛焦螢光顯微鏡之影像分析 45 5.3 實驗結果與討論 46 5.3.1 添加γ-PGA之奈米微粒抑制基因表現之時間趨勢結果 46 5.3.2 共軛焦顯微鏡之影像分析 47 5.4 結論 49 第六章 參考文獻 51

    (1) Fire, A., Xu, S. Q., Montgomery, M. K., Kostas, S. A., Driver, S. E., and Mello, C. C. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806-811.
    (2) Kennedy, D. (2002) Breakthrough of the year. Science 298, 2283-2283.
    (3) McNamara, J. O., Andrechek, E. R., Wang, Y., D Viles, K., Rempel, R. E., Gilboa, E., Sullenger, B. A., and Giangrande, P. H. (2006) Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. Nature Biotechnology 24, 1005-1015.
    (4) Bumcrot, D., Manoharan, M., Koteliansky, V., and Sah, D. W. Y. (2006) RNAi therapeutics: a potential new class of pharmaceutical drugs. Nature Chemical Biology 2, 711-719.
    (5) Takeshita, F., and Ochiya, T. (2006) Therapeutic potential of RNA interference against cancer. Cancer Science 97, 689-696.
    (6) Aigner, A. (2006) Gene silencing through RNA interference (RNAi) in vivo: Strategies based on the direct application of siRNAs. Journal of Biotechnology 124, 12-25.
    (7) Schwarz, D. S., Tomari, Y., and Zamore, P. D. (2004) The RNA-induced silencing complex is a Mg2+-dependent endonuclease. Current Biology 14, 787-791.
    (8) Li, S. D., Chono, S., and Huang, L. (2008) Efficient gene silencing in metastatic tumor by siRNA formulated in surface-modified nanoparticles. Journal of Controlled Release 126, 77-84.
    (9) Cardoso, A. L., Pelisek, J., Almeida, L. P., Simoes, S., Plesnila, N., Wagner, E., de Lima, M. C. P., and Culmsee, C. (2006) siRNA delivery by transferrin associated lipoplexes: A novel non-viral strategy to mediate gene silencing in neurons. Naunyn-Schmiedebergs Archives of Pharmacology 372, 78-78.
    (10) Howard, K. A., Rahbek, U. L., Liu, X. D., Damgaard, C. K., Glud, S. Z., Andersen, M. O., Hovgaard, M. B., Schmitz, A., Nyengaard, J. R., Besenbacher, F., and Kjems, J. (2006) RNA interference in vitro and in vivo using a chitosan/siRNA nanoparticle system. Molecular Therapy 14, 476-484.
    (11) de Fougerolles, A., Vornlocher, H. P., Maraganore, J., and Lieberman, J. (2007) Interfering with disease: a progress report on siRNA-based therapeutics. Nature Reviews Drug Discovery 6, 443-453.
    (12) Sass, G., Leukel, P., Schmitz, V., Raskopf, E., Ocker, M., Neureiter, D., Meissnitzer, M., Tasika, E., Tannapfel, A., and Tiegs, G. (2008) Inhibition of heme oxygenase 1 expression by small interfering RNA decreases orthotopic tumor growth in livers of mice. International Journal of Cancer 123, 1269-1277.
    (13) Lomas-Neira, J. L., Chung, C. S., Wesche, D. E., Perl, M., and Ayala, A. (2005) In vivo gene silencing (with siRNA) of pulmonary expression of MIP-2 versus KC results in divergent effects on hemorrhage-induced, neutrophil-mediated septic acute lung injury. Journal of Leukocyte Biology 77, 846-853.
    (14) Burchard, J., Jackson, A. L., Malkov, V., Needham, R. H. V., Tan, Y. J., Bartz, S. R., Dai, H. Y., Sachs, A. B., and Linsley, P. S. (2009) MicroRNA-like off-target transcript regulation by siRNAs is species specific. Rna-a Publication of the Rna Society 15, 308-315.
    (15) Chen, Y., Cheng, G., and Mahato, R. I. (2008) RNAi for treating hepatitis B viral infection. Pharmaceutical Research 25, 72-86.
    (16) Geisbert, T. W., Hensley, L. E., Kagan, E., Yu, E. Y. Z., Geisbert, J. B., Daddario-DiCaprio, K., Fritz, E. A., Jahrling, P. B., McClintock, K., Phelps, J. R., Lee, A. C. H., Judge, A., Jeffs, L. B., and MacLachlan, I. (2006) Postexposure protection of guinea pigs against a lethal Ebola virus challenge is conferred by RNA interference. Journal of Infectious Diseases 193, 1650-1657.
    (17) Chen, X. H., Lan, B., Qu, Y., Zhang, X. Q., Cai, Q., Liu, B. Y., and Zhu, Z. G. (2006) Inhibitory effect of Polo-like kinase 1 depletion on mitosis and apoptosis of gastric cancer cells. World Journal of Gastroenterology 12, 29-35.
    (18) Zhang, H., Wang, H. B., Zhang, J. J., Qian, G. X., Niu, B. B., Fan, X. Q., Lu, J., Hoffman, A. R., Hu, J. F., and Ge, S. F. (2009) Enhanced Therapeutic Efficacy by Simultaneously Targeting Two Genetic Defects in Tumors. Molecular Therapy 17, 57-64.
    (19) Faltus, T., Yuan, J. P., Zimmer, B., Kramer, A., Loibl, S., Kaufmann, M., and Strebhardt, K. (2004) Silencing of the HER2/neu gene by siRNA inhibits proliferation and induces apoptosis in HER2/neu-overexpressing breast cancer cells. Neoplasia 6, 786-795.
    (20) Sun, H. W., Tong, S. L., He, J., Wang, Q., Zou, L., Ma, S. J., Tan, H. Y., Luo, J. F., and Wu, H. X. (2007) RhoA and RhoC-siRNA inhibit the proliferation and invasiveness activity of human gastric carcinoma by Rho/PI3K/Akt pathway. World Journal of Gastroenterology 13, 3517-3522.
    (21) Zuber, G., Dauty, E., Nothisen, M., Belguise, P., and Behr, J. P. (2001) Towards synthetic viruses. Advanced Drug Delivery Reviews 52, 245-253.
    (22) Anderson, D. G., Peng, W. D., Akinc, A., Hossain, N., Kohn, A., Padera, R., Langer, R., and Sawicki, J. A. (2004) A polymer library approach to suicide gene therapy for cancer. Proceedings of the National Academy of Sciences of the United States of America 101, 16028-16033.
    (23) Martin, B., Sainlos, M., Aissaoui, A., Oudrhiri, N., Hauchecorne, M., Vigneron, J. P., Lehn, J. M., and Lehn, P. (2005) The design of cationic lipids for gene delivery. Current Pharmaceutical Design 11, 375-394.
    (24) Wolff, J. (2005) Nonviral vectorology: In a good place. Molecular Therapy 11, 333-333.
    (25) Li, S. D., and Huang, L. (2007) Non-viral is superior to viral gene delivery. Journal of Controlled Release 123, 181-183.
    (26) Akinc, A., Thomas, M., Klibanov, A. M., and Langer, R. (2005) Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. Journal of Gene Medicine 7, 657-663.
    (27) Lin, Y. H., Chung, C. K., Chen, C. T., Liang, H. F., Chen, S. C., and Sung, H. W. (2005) Preparation of nanoparticles composed of chitosan/poly-gamma-glutamic acid and evaluation of their permeability through Caco-2 cells. Biomacromolecules 6, 1104-1112.
    (28) Peng, S. F., Yang, M. J., Su, C. J., Chen, H. L., Lee, P. W., Wei, M. C., and Sung, H. W. (2009) Effects of incorporation of poly(gamma-glutamic acid) in chitosan/DNA complex nanoparticles on cellular uptake and transfection efficiency. Biomaterials 30, 1797-1808.
    (29) Jin, J., Song, M., and Hourston, D. J. (2004) Novel chitosan-based films cross-linked by genipin with improved physical properties. Biomacromolecules 5, 162-168.
    (30) Iwasaki, N., Yamane, S. T., Majima, T., Kasahara, Y., Minami, A., Harada, K., Nonaka, S., Maekawa, N., Tamura, H., Tokura, S., Shiono, M., Monde, K., and Nishimura, S. I. (2004) Feasibility of polysaccharide hybrid materials for scaffolds in cartilage tissue engineering: Evaluation of chondrocyte adhesion to polyion complex fibers prepared from alginate and chitosan. Biomacromolecules 5, 828-833.
    (31) Mao, H. Q., Roy, K., Troung-Le, V. L., Janes, K. A., Lin, K. Y., Wang, Y., August, J. T., and Leong, K. W. (2001) Chitosan-DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency. Journal of Controlled Release 70, 399-421.
    (32) Kim, T. H., Park, I. K., Nah, J. W., Choi, Y. J., and Cho, C. S. (2004) Galactosylated chitosan/DNA nanoparticles prepared using water-soluble chitosan as a gene carrier. Biomaterials 25, 3783-3792.
    (33) Mi, F. L., Wu, Y. Y., Lin, Y. H., Sonaje, K., Ho, Y. C., Chen, C. T., Juang, J. H., and Sung, H. W. (2008) Oral delivery of peptide drugs using nanoparticles self-assembled by poly(gamma-glutamic acid) and a chitosan derivative functionalized by trimethylation. Bioconjugate Chemistry 19, 1248-1255.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE