簡易檢索 / 詳目顯示

研究生: 林欣磊
Lin, Hsin-Lei
論文名稱: 可替換水下開放式旋轉磁性編碼器於機器人關節應用之研究開發
Development of a Replaceable Underwater Open-Rotation Magnetic Encoder for Robotics Joint Applications
指導教授: 張禎元
Chang, Jen-Yuan
簡禎富
Chien, Chen-Fu
口試委員: 馮國華
Feng, Guo-Hua
張賢廷
Chang, Hsien-Ting
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2024
畢業學年度: 113
語文別: 中文
論文頁數: 90
中文關鍵詞: 磁性編碼器機械手臂水下機器人
外文關鍵詞: Magnetic Encoders, Robotic Arms, Underwater Robots
相關次數: 點閱:52下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著機器人在水下複雜且高難度作業環境中的應用增強,優於派遣人員執行水下作業,透過日漸進步的遠端操作技術(teleoperation)及自動化(automation),水下機器人具備長時間作業能力、也沒有人類在水下的生理限制,是提高水下作業效率的關鍵利器。水下作業任務的完成則需要精密靈活的機械手臂來執行,因此致動器(actuator)及編碼器(encoder)作為手臂運動感測器,是確保運動的準確度和機械訊息反饋的核心。
    本研究提出並驗證了一種新型可拆卸旋轉式磁編碼器,展示了其卓越的精度和在水下應用中的潛力。該編碼器採用霍爾感測器作為感測元件,搭配磁性增量式碼盤旋轉產生訊號,並通過濾波器來增強信噪比。實驗驗證結果表明,該系統具有高定位精度和重複性,能夠精確響應水下旋轉0.1度的波動。考慮到該測量系統的特性,預見其在水下機械臂關節中的應用前景,從而推動水下精密控制技術的進步。


    As underwater robots outperform human divers in complex and challenging underwater environments, the advancements in teleoperation and automation technologies allow these robots to maintain extended working hours without the physiological limitations faced by humans underwater. This makes them a crucial tool for enhancing the efficiency of underwater operations. The completion of underwater tasks requires precise and flexible robotic arms, making actuators and encoders, which serve as motion sensors for the arms, essential for ensuring motion accuracy and mechanical feedback.
    This study proposes, develops, and validates a novel detachable rotary magnetic encoder, demonstrating its exceptional precision and potential for underwater applications, whether in underwater or aerial environments. The encoder uses Hall sensors as sensing elements to generate signals orthogonal to the incremental disc rotation and employs filters to enhance the signal-to-noise ratio. Experimental validation results indicate that the system has high positioning accuracy and repeatability, capable of precisely responding to fluctuations of 0.1 degrees underwater. Considering the characteristics of this measurement system, its application prospects in underwater robotic arm joints are anticipated, thus promoting advancements in underwater precision control technology.

    摘要 I Abstract II 圖目錄 VII 表目錄 XI 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 2 1.3 文獻回顧 4 1.3.1 光學編碼器 6 1.3.2 電容編碼器 8 1.3.3 磁性編碼器 11 1.3.4 機械手臂 14 1.3.5 水下機器人 20 1.4 市售產品分析 24 1.5 研究問題統整與目標 25 1.6 研究方法 27 1.7 本論文研究產出 28 第二章 自製磁性編碼器 29 2.1 前言 29 2.2 磁性編碼器原理 29 2.2.1 霍爾感測原理 29 2.2.3 Lissajous Circle 32 2.3 磁性編碼器設計 34 2.3.1 零件挑選 34 2.3.2 電路設計 38 2.4 電路板防水保護設計 42 2.5 磁性編碼器設計與製作 43 第三章 實驗與驗證 46 3.1 前言 46 3.2 編碼器驗證平台設計 46 3.3 驗證平台之設備介紹 48 3.4 訊號流程 54 3.5 程式語言在實驗操作中的應用 55 3.5.1 訊號讀取與操作 55 3.5.2 馬達控制 57 3.6 編碼器演算法 57 3.7 實驗驗證 61 3.7.1 介質差異 62 3.7.2 溫度變化 68 3.7.3 安裝誤差 70 第四章 水下機械手臂設計與開發 73 4.1 前言 73 4.2 水下機械手臂 73 4.3 油壓手臂系統設備介紹 73 4.4 水下機械手臂設計 75 4.5 水下機械手臂結合本實驗開發之編碼器成果 80 第五章 結論 84 5.1 結論 84 5.2 本文貢獻 85 5.3 未來展望 86 參考文獻 87

    [1] J. Agbakwuru, "Oil/Gas pipeline leak inspection and repair in underwater poor visibility conditions: challenges and perspectives," Journal of Environmental Protection, vol. 2012, 2012.
    [2] M. K. Maity, S. Suman, and P. Biswas, "Autonomous Robotic Underwater Welding—A Review," in International Conference on Science, Technology and Engineering, 2023: Springer, pp. 307-316.
    [3] J. S. Shin et al., "Underwater cutting of 50 and 60 mm thick stainless steel plates using a 6-kW fiber laser for dismantling nuclear facilities," Optics & Laser Technology, vol. 115, pp. 1-8, 2019.
    [4] "Underwater Robotics Market Size, Share & Trends Analysis Report By Type (ROV, AUV), By Application (Commercial Exploration, Defense & Security, Scientific Research), By Region, And Segment https://www.grandviewresearch.com/industry-analysis/underwater-robotics-market (accessed 07.24, 2024).
    [5] C. W. De Silva, Sensors and actuators: Engineering system instrumentation. CRC press, 2015.
    [6] D. Herath and D. St-Onge, Foundations of robotics: a multidisciplinary approach with Python and ROS. Springer, 2022.
    [7] "Magnetic encoders." MACCON. https://www.maccon.com/rotary-linear-encoders/magnetic-encoders.html (accessed 2023-11-26.
    [8] J. Seybold et al., "Miniaturized optical encoder with micro structured encoder disc," Applied Sciences, vol. 9, no. 3, p. 452, 2019.
    [9] D. Gurauskis et al., "Development and Experimental Research of Different Mechanical Designs of an Optical Linear Encoder’s Reading Head," Sensors, vol. 22, no. 8, p. 2977, 2022.
    [10] A. J. Fleming and K. K. Leang, Design, modeling and control of nanopositioning systems. Springer, 2014.
    [11] E. Hering and G. Schönfelder, Sensors in Science and Technology. Springer, 2022.
    [12] J. Iqbal, R. U. Islam, and H. Khan, "Modeling and analysis of a 6 DOF robotic arm manipulator," Canadian Journal on Electrical and Electronics Engineering, vol. 3, no. 6, pp. 300-306, 2012.
    [13] W. Tong, Mechanical design and manufacturing of electric motors. CRC press, 2022.
    [14] A. Belous and V. Saladukha, High-Speed Digital System Design: Art, Science and Experience. Springer Nature, 2019.
    [15] F. Kimura, M. Gondo, N. Yamashita, A. Yamamoto, and T. Higuchi, "Prototyping of flexible capacitive encoder with un-tethered slider using electrostatic induction," in SENSORS, 2008 IEEE, 2008: IEEE, pp. 1619-1622.
    [16] J. Shi, B. Zhou, B. Xing, Q. Wei, and R. Zhang, "A miniatured fully integrated high resolution and accuracy capacitive angle encoder," IEEE Sensors Journal, vol. 24, no. 6, pp. 7264-7272, 2023.
    [17] B. Hou, C. Li, Z. Gao, Q. Wei, B. Zhou, and R. Zhang, "Design, Optimization, and Compensation of a High-Precision Single-Excitation Absolute Capacitance Angular Encoder up to±4 ," IEEE Transactions on Industrial Electronics, vol. 66, no. 10, pp. 8161-8171, 2018.
    [18] S. Das, T. S. Sarkar, and B. Chakraborty, "Simple approach to design a capacitive rotary encoder," IET Science, Measurement & Technology, vol. 12, no. 4, pp. 500-506, 2018.
    [19] E. Yavsan, M. R. Kara, M. Karali, B. Gokce, and M. A. Erismis, "A novel high resolution miniaturized capacitive rotary encoder," Sensors and Actuators A: Physical, vol. 331, p. 112992, 2021.
    [20] S. Alvarez-Rodríguez and F. G. Peña-Lecona, "Artificial Neural Networks with Machine Learning Design for a Polyphasic Encoder," Sensors, vol. 23, no. 20, p. 8347, 2023.
    [21] B. Hou, B. Zhou, X. Li, Z. Gao, Q. Wei, and R. Zhang, "An analog interface circuit for capacitive angle encoder based on a capacitance elimination array and synchronous switch demodulation method," Sensors, vol. 19, no. 14, p. 3116, 2019.
    [22] M. Karali, A. Karasahin, O. Keles, M. Kocak, and M. Erismis, "A new capacitive rotary encoder based on analog synchronous demodulation," Electrical Engineering, vol. 100, pp. 1975-1983, 2018.
    [23] D. Domajnko and D. Križaj, "Lagging-domain model for compensation of hysteresis of xmr sensors in positioning applications," Sensors, vol. 18, no. 7, p. 2281, 2018.
    [24] "AKM AK877x Magnetic Encoder ICs – Discontinued." GMW Associates. https://gmw.com/product/ak877x-magnetic-encoder-ics/ (accessed 2023-11-26.
    [25] D. Gazda. "Easy Encoder Guide – Part 2: More Rotary Encoders." ACD.https://blog.acdist.com/easy-encoder-guide-part-2-more-rotary-encoders (accessed 2023/11/16).
    [26] M. Ghasemi, A. Korayem, S. Nekoo, and M. Korayem, "Improvement of position measurement for 6R robot using magnetic encoder AS5045," Journal of Computational & Applied Research in Mechanical Engineering (JCARME), vol. 6, no. 1, pp. 11-20, 2016.
    [27] M. C. Becquet, Teleoperation: Numerical Simulation and Experimental Validation. Springer Science & Business Media, 2012.
    [28] J. Wang et al., "A survey of the development of biomimetic intelligence and robotics," Biomimetic Intelligence and Robotics, vol. 1, p. 100001, 2021.
    [29] U. Trivedi, D. Menychtas, R. Alqasemi, and R. Dubey, "Biomimetic approaches for human arm motion generation: Literature review and future directions," Sensors, vol. 23, no. 8, p. 3912, 2023.
    [30] S. Procter and E. L. Secco, "Design of a biomimetic BLDC driven robotic arm for teleoperation & biomedical applications," J Hum Earth Future. ISSN, pp. 2785-2997, 2022.
    [31] D. J. Todd, Fundamentals of robot technology: An introduction to industrial robots, teleoperators and robot vehicles. Springer, 1996.
    [32] Q. Zeng, Y. Fang, and K. F. Ehmann, "Design of a novel 4-DOF kinematotropic hybrid parallel manipulator," 2011.
    [33] J. Wallén, The history of the industrial robot. Linköping University Electronic Press, 2008.
    [34] H. Yin, S. Huang, M. He, and J. Li, "An overall structure optimization for a light-weight robotic arm," in 2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA), 2016: IEEE, pp. 1765-1770.
    [35] M.-A. Cabrera-Rufino, J.-M. Ramos-Arreguín, J. Rodríguez-Reséndiz, E. Gorrostieta-Hurtado, and M.-A. Aceves-Fernandez, "Implementation of ANN-based auto-adjustable for a pneumatic servo system embedded on FPGA," Micromachines, vol. 13, no. 6, p. 890, 2022.
    [36] Y. Maddahi and K. Zareinia, "An analysis of power consumption of fluid-driven robotic arms using isotropy index: A proof-of-concept simulation-based study," Robotics, vol. 11, no. 2, p. 32, 2022.
    [37] Q. Tan et al., "Underwater crawling robot with hydraulic soft actuators," Frontiers in Robotics and AI, vol. 8, p. 688697, 2021.
    [38] H. Xia, M. A. Khan, Z. Li, and M. Zhou, "Wearable robots for human underwater movement ability enhancement: A survey," IEEE/CAA Journal of Automatica Sinica, vol. 9, no. 6, pp. 967-977, 2022.
    [39] D.-H. Ji, H.-S. Choi, S.-K. Jeong, H.-J. Cho, J.-H. Lee, and W.-H. Hsieh, "Study on underwater navigation for underwater track vehicle," Journal of Marine Science and Technology, vol. 28, no. 6, p. 8, 2020.
    [40] M. Á. Pérez Bayas, J. Cely, A. Sintov, C. E. García Cena, and R. Saltaren, "Method to develop legs for underwater robots: from multibody dynamics with experimental data to mechatronic implementation," Sensors, vol. 22, no. 21, p. 8462, 2022.
    [41] H. Kim and J. Lee, "Design, swimming motion planning and implementation of a legged underwater robot (CALEB10: D. BeeBot) by biomimetic approach," Ocean engineering, vol. 130, pp. 310-327, 2017.
    [42] M. Marcin, S. Adam, Z. Jerzy, and M. Marcin, "Fish-like shaped robot for underwater surveillance and reconnaissance–Hull design and study of drag and noise," Ocean Engineering, vol. 217, p. 107889, 2020.
    [43] L. Barbieri, F. Bruno, A. Gallo, M. Muzzupappa, and M. L. Russo, "Design, prototyping and testing of a modular small-sized underwater robotic arm controlled through a Master-Slave approach," Ocean Engineering, vol. 158, pp. 253-262, 2018.
    [44] H.-L. Lin, K.-Y. Peng, and J.-Y. Chang, "Development of Open-structure Rotary Magnetic Encoder for Underwater Applications," in 2024 IEEE International Magnetic Conference-Short papers (INTERMAG Short papers), 2024: IEEE, pp. 1-2.
    [45] H.-L. Lin, K.-Y. Peng, and J.-Y. Chang, "Design and Evaluation of an Open-structure Rotary Magnetic Encoder for Subaqueous Environments," IEEE Transactions on Magnetics, 2024.
    [46] M. Karimi, E. Babaians, M. Oelsch, T. Aykut, and E. Steinbach, "Skewed-redundant hall-effect magnetic sensor fusion for perturbation-free indoor heading estimation," in 2020 Fourth IEEE International Conference on Robotic Computing (IRC), 2020: IEEE, pp. 367-374.
    [47] K.-C. Fan, F. Cheng, and Y.-J. Chen, "Nanopositioning control on a commercial linear stage by software error compensation," Nanotechnology and Precision Engineering, vol. 4, no. 1, pp. 1-9, 2005.
    [48] K.-Y. Peng and J.-Y. Chang, "Magnetization system for spindle axial thermal elongation measurements," IEEE Transactions on Magnetics, vol. 58, no. 2, pp. 1-5, 2021.
    [49] "FAULHABERDC-MOTORSSeries2657W024CXR." https://www.faulhaber.com/en/products/series/2657cxr/(accessed 08/01, 2024).
    [50] "FAULHABER PLANETARY GEARHEADS Series 26/1." https://www.faulhaber.com/en/products/series/261/ (accessed 08/01, 2024).

    QR CODE