研究生: |
洪欣怡 Hsin I Hung |
---|---|
論文名稱: |
9L大白鼠腦瘤細胞在不同誘發過程中grp78啟動子轉錄調節元件之功能分析 FUNCTIONAL ANALYSIS OF TRANSCRIPTION ELEMENTS IN THE REGULATION OF Grp78 UNDER DIFFERENT INDUCTION PROCESSES IN 9L RBT |
指導教授: |
黎耀基博士
Dr. Yiu-Kay Lai |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物科技研究所 Biotechnology |
論文出版年: | 2001 |
畢業學年度: | 89 |
語文別: | 中文 |
論文頁數: | 42 |
中文關鍵詞: | 葡萄糖調控蛋白78 、啟動子 元件之功能分析 、9L大白鼠腦瘤細胞 、流式細胞分析儀 、轉染 、內質網逆境 |
外文關鍵詞: | grp78, promoter element functional analysis, 9L RBT cells, flow-cytometer, transfection, ER stress |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
葡萄糖調控蛋白78 (Glucose-Regulated Protein 78, GRP78) 位於內質網中,具有鈣離子結合能力以及保護子的功能,能夠幫助新合成之蛋白質的折疊,使其具有正確的功能和結構。當細胞處於逆境環境下,會誘發細胞中GRP78表現增加。在哺乳動物中,葡萄糖調控蛋白78的基因只有一個,且其啟動子序列上的功能是非常豐富的,透過DNaseⅠfootprint 及gel mobility shift assay已經證實grp78啟動子序列上有許多不同的轉錄蛋白因子與之結合,調節grp78啟動子的活性。
在此論文中我們以9L大白鼠腦腫瘤細胞為材料,根據ER-Stress element重新定義grp78起動子上的調控序列,接著由起動子3’端起做一系列的移除來探討在不同的內質網逆境下,grp78起動子調節元件的功能分析。當細胞在7種不同機制的藥物處理底下,我們觀察到CRE-like (cAMP response element -like) 8個鹼基元件的移除,皆會使起動子的活性明顯的大過於本來未作任何修改的啟動子強度,而△21是所有啟動子活性中最弱的,但是當進一步將其上的ERSE3元件移除後卻會大幅增加其啟動子的活性。因此,根據其他報導我們推測在CRE-like 元件上有屬於CREB-RP(cAMP response element binding protein-related protein)家族的負調控轉錄蛋白與之結合而新被分離出會抑制ER stress gene表現,拮抗YY-1透過core 元件作用而增加grp78轉錄的負調控蛋白轉錄因子YB-1及dbpA則應是更準確的結合在ERSE3元件上。另外,利用鈣離子螯合抑制劑dibromo-1,2-bis(aminophenoxy)ethane N, N, N’, N’-tetracetic acid (BAPTA) ,我們發現除了 thapsigargin (TG) 和 A23187誘導grp78表現是透過鈣離子擾動而會被BAPTA所抑制之外, tunicamycin 及 2-deoxyglucose 這兩種內質網糖化抑制劑和CdCl2這些經由不同機制誘導grp78表現的藥劑同時也會被BAPTA所抑制。據此,我們推測誘導grp78表現的內質網逆境在誘導grp78表現時可能都與鈣離子的訊號傳遞有關。
Glucose regulated protein 78(grp78) is localized in endoplasmic reticulum, it has calcium binding and chaperone function ability. When cells under stress condition grp78 expression will increase. In mammalian cell, grp78 is a single copy gene and its promoter is functionally redundant which by criterion of DNaseⅠfootprint and gel mobility shift assay binding with nuclear factors.
Based on ER-Stress novel promoter regulatory motifs(ERSE) CCAATN9CCACG mediated ER stress response, we identified common cis-regulatory elements on rat grp78 promoter in 9L RBT cells. Using an extensive series of 3’-deletion and CRE-like 8 base pair deletion alone of rat grp78 promoter in a homologous manner. We found that under seven different kinds mechanism drugs treatment, the promoter activity of CRE-like 8 base pair deletion was always significant higher than the intact full length one and Δ21 construct showed the lowest promoter activity that in some treatment even equal or lower than the TATA control construct while addition remove ERSE3 element would promote the promoter activity. Recently, it was reported that overexpression of CREB-Rp (cAMP response element binding protein-related protein) prevents ER stress induced transcription of grp genes mediated by endogenous transactivator. Others reported two new identified Y-box proteins YB-1 and dbpA that repress YY-1 mediated enhanced transcription of grp78 via core element. These lead us to conclude that rat grp78 promoter is strong and many transcription factor binding on its functional redundant element to properly regulate its activity. Some down regulatory transcription factors of CREB-Rp member may bind on CRE-like element. In addition to, negatively control transcription factors YB-1 and dbpA may precisely bind on ERSE3 element that reduce grp78 promoter activity. Moreover, we also showed that stress induces grp78 expression process may all involve in calcium signaling.
Alexandre, S., Nakaki, T., Vanhamme, L., and Lee, A. S. (1991): A binding site for the cyclic adenosine 3’,5’monophosphate response element binding protein (CREB) as a regulatory element in the grp78 promoter .Mol. Endocrinol. 5, 1862-1872
Attenello, J. W., and Lee, A. S. (1984): Regulation of a hybrid gene by glucose and temperature in hamster fibroblasts. Science (Wahington DC) 226, 187-190
Berridge, M. J. (1998): neuronal calcium signaling . Neuron 21,13-26
Brostrom, M. A., Cade , C., Prostko, C. O., Gmitteryellen, D and Brostrom, C.O.(1990): Accommodation of protein synthesis to chronic deprivation of intracellular sequestered calcium. A putative role for GRP78. J. Biol. Chem. 265,20539-20546
Chang, S. C., Erwin, A., and Lee, A. S. (1989): Glucose-regulated protein (GRP94 and GRP78) genes share common regulatory domains and are coordinately regulated by common trans-acting factors. Mol. Cell. Biol. 9, 2153-2162
Chao C. C, Yam W.C., Chao S (1990): Coordinated induction of two unrelated glucose-regulated protein genes by a calcium ionophore: human BiP/GRP78 and GAPDH. Biochem Biophys Res Commun 171, 431-438.
Chen, L. Y., Chiang, A. S., Hung, J. J., Hung, H. I., and Lai, Y. K. (2000): Thapsigargin-induced grp78 expression is mediated by the increse of cytosolic free calcium in 9L rat brain tumor cells. J.Cell. Biochem. 78, 404-416
Delpino, A, Piselli, P, Vismara, D, Vendetti, S, Colizzi, V (1998): Cell surface localization of the 78 kD glucose regulated protein (GRP 78) induced by thapsigargin. Mol Membr Biol 15, 21-26.
Garaschuk, O., Yaari, Y. and Konnerth, A. (1997): Release and sequestration of calcium by ryanodine-sensitive stores in hippocampal neurons. J. Physiol. (Cambridge, U. K) 502,13-20
Gething, M.-J.(1997) Guidebook to Molecular Chaperones and Protein-Folding Catalysts. Oxford University press, Oxford
Hendershot, L. M., Ting, J., and Lee, A. S. (1998): Identity of the immnoglobulin heavy chain binding protein with the 78,000-dalton glucose-regulated protein and the role of posttranslational modifications in its binding function. Mol. Cell. Biol. 8, 4250-4256
Hou, M. C., Shen, C. H., Lee, W. C. and Lai, Y. K. (1993): Okadaic acid as an inducer of the 78 kDa glucose-regulated protein in 9L rat brain tumor cells. J. Cell. Biochem. 51, 91-101
Kozutsumi, Y., Segal, M., Normington, K., Gething, M. J., and Sambrook, J. (1988): The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins. Nature 332, 462-464
Kuznetsov, G., Brostrom, M. A. and Brostrom, C. O. (1992): Demonstration of a calcium requirement for secretory protein processing and export. Differential effects of calcium and dithiothreitol. J. Biol. Che 265,3932-3939
Lawson, B., Brewer J.W., Hendershot, L.M. (1998): Geldanamycin, an hsp90/GRP94-binding drug, induces increased transcription of endoplasmic reticulum (ER) chaperones via the ER stress pathway. J Cell Physiol 174,170-178
Lee, A. S. (1987): Coordinated regulation of a set of genes by glucose and calcium ionophores in mammalian cells. Trends Biochem. Sci. 12, 20-23
Lee, A. S. (1992): Mammalian stress response: induction of the glucose-regulated protein family. Curr. Opin. Cell. Biol. 4, 267-273
Li, W. W., Alexandre, S., Cao, X., and Lee, A. S. (1993): Transactivation of the grp78 promoter by Ca2+ depletion. A comparative analysis with A23187 and the endoplasmic reticulum Ca2+-ATPase inhibitor thapsigargin. J Biol. Chem. 268, 12003-12009
Li, W. W., Sistonen, L., Morimoto, R. I., and Lee, A. S. (1994): Stress induction of the mammalian GRP78/BiP protein gene : in vivo genomic footprinting and identification of p70CORE from human nuclear extract as a DNA-binding component specific to the stress regulatory element. Mol. Cell. Biol. 14, 5533-5546
Lievremont, J. P., Rizzuto, R., Hendershot, L., and Meldolesi, J. (1997): BiP a major chaperone protein of the endoplasmic reticulum lumen plays a direct and important role in the storage of the rapidly exchanging pool of Ca2+. J. Biol. Chem. 272, 30873-30879
Lin, A. Y., S. C.Chang , and A. S. Lee. (1986): A calcium ionophore-inducible cellular promoter is highly active and has enhancerlike properties. Mol. Cell. Biol 6,1235-1243
Little, E, Ramakrishnan, M., Roy, B., Gazit, G., and Lee, A. S. (1994): The glucose-regulated proteins (GRP78 and GRP94): functions, gene regulation, and applications. Crit. Rev. Eucaryotic Gene Expression 4, 1-18
Liu, E. S., and A. S. Lee. (1991): Common sets of nuclear factors binding to the conserved promoter sequence motif of two coordinately regulated ER protein genes, GRP78 and GRP94. Nucleic Acids Res. 19, 5425-5431
Lodish, H. F. and Kong, N.(1990): Perturbation of cellular calcium blocks exit of secretory proteins from rough endoplasmic reticulum. J. Biol. Chem 265, 10893-10899
Lodish, H. F., Kong, N. and Wikstrom, L.(1992): Calcium is required for folding of newly made subunits of the asialoglycoprotein receptor within the endoplasmic reticulum. J. Biol. Chem. 267,12753-12760
McMillan, D. R., Gething, M. J., and Sambrook, J. (1994): The cellular response to unfolded proteins: intercompartmental signaling. Curr. Opin. Biotechnol. 5, 540-545
Meldolesi, J., and Pozzan, T. (1998): The endoplasmic reticulum Ca2+ store: a view from the lumen. Trends Biochem. Sci. 23, 10-14
Pelham, H. R. B. (1986): Speculations on the function of the major heat shock and glucose-regulated proteins Cell 46, 959-961
Resendez, E. Jr., Attenello, J. W., Grafsky, A., Chang, C. S., and Lee, A. S. (1985): Calcium ionophore A23187 induces expression of glucose-regulated genes and their heterologous fusion genes. Mol. Cell. Biol. 5, 1212-1219
Resendez, E., Jr., Wooden, S. K., and Lee, A. S. (1988): Identification of highly conserved regulatory domains and protein-binding sites in the promoters of the rat and human genes encoding the stress-inducible 78-kilodalton glucose-regulated protein. Mol. Cell. Biol. 8, 4579-4584
Roy, B., and A. S. Lee. (1995): Transduction of calcium stress through interaction of the human transcription factor CBF with the proximal CCAAT regulatory element of the grp78/Bip promoter. Mol. Cell. Biol 15,2263-2274
Roy, B., and A. S. Lee. (1999): The mammalian endoplasmic reticulum stress response element consists of an evolutionarily conserved tripartite structure and interacts with a novel stress-inducible complex. Nucleic Acids Res. 27, 1437-1443
Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 2nd Ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
Shamu, C., Cox, J., and Walter, P. (1994): The unfolded -protein -response pathway in yeast. Trends Cell Biol. 4, 56-60
Thastrup, O.,Dawson, A. P., Scharff, O., Foder, B., Cullen, P. J., Drobak, B. K., Bjerrum, R. J., Christensen, S. B., and Hanley, M. R. (1994): Thapsigargin a novel molecular probe for studying intracellular calcium release and storage. Agents Actions 43, 187-193
Watowich, S.S, Morimoto RI (1988): Complex regulation of heat shock- and glucose-responsive genes in human cells. Mol Cell Biol 8, 393-405.
Wooden, S. K., R, P. Kapur, and A, S. Lee. (1988): The organization of the GRP78 gene and A23187-induced expression of fusion gene products targeted intracellularly. Exp Cell Res. 178, 84--92.
Wooden, S. K., Li, L-J., Navarro, D., Qadri, I., Pereira, L., and Lee, A. S. (1991): Transactivation of the grp78 promoter by malfolded proteins, glycosylation block, and calcium ionophore is mediate through a proximal region containing a CCAAT motif which interacts with CTF/NF-I. Mol. Cell. Biol., 11,5612-5623,
Yoshida, H., K. Haze, H. Yanagi, T. Yura, and K. Mori. (1998.) Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptionalinduction of mammalian glucose-regulated proteins. Involvement of basic leucine zipper transcription factors. J. Biol. Chem. 73,33741-33749.