研究生: |
黃雅君 Ya-Chun Huang |
---|---|
論文名稱: |
新型血管新生因子(Ginsenoside Rg1與Re)與其在組織工程的應用 |
指導教授: | 宋信文 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 66 |
中文關鍵詞: | 血管增生 、組織工程 、Ginsenoside Rg1 、Ginsenoside Re |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
在組織工程的研究裡,常遭遇到植入生物體內後的人工細胞外間質血管增生不足,造成遷入的細胞與新生的組織無法獲得充分的氧氣與養分。為了解決這項問題,文獻中曾有研究群在人工細胞外間質內加入生長因子,以促進其內的血管增生。目前用來當做促進血管增生的生長因子大部分都是蛋白質,其在生物體內的穩定性不佳,很容易失去其活性。為了克服這項問題,我們著手使用了從中藥〝人參〞裡,萃取純化出來的ginsenoside Rg1 (Rg1)與ginsenoside Re (Re)來當做新型的促進血管生長因子。
本研究主要分成三部份來進行。在第一和第二部分的實驗裡,我們以體外細胞培養測試的方式,分別評估了Rg1與Re對人類臍帶靜脈內皮細胞(HUVECs)的增殖、遷徙以及tube formation的影響。實驗裡,我們以在細胞培養基中未添加任何藥物當做空白對照組,而以在細胞培養基中加入bFGF當做正對照組。在本部份的實驗裡,我們證實了Rg1與Re具有與目前文獻上使用的血管生長因子(如bFGF)相同的特性,可以促進HUVECs增殖、遷徙以及tube formation的能力。同時我們也發現Rg1較親水,而Re則屬疏水性藥物。
在第三部分的體內實驗裡,我們以genipin交聯經醋酸膨潤與酵素處理的去細胞牛心包膜,當做人工細胞外間質(ECM),然後把Re以gelatin包覆在ECM (ECM/Re)內後植入老鼠背部,探討Re在生物體內對血管增生以及組織再生與修復的影響。Rg1的體內實驗探討已由本實驗室博士班學生 梁晃千學長完成。實驗裡的對照組為bFGF (ECM/bFGF),以及未包覆任何生長因子的ECM (ECM/ control)。在實驗設計上,我們分別於1星期與1個月後取樣,針對植入後人工細胞外間質內的血管增生數目、免疫反應、細胞遷入種類與滲入數目(infiltrated cell number)、組織修復時新生的細胞外間質組成以及變性溫度等加以評估。
實驗結果顯示,ECM/Re與ECM/bFGF在植入1星期後,老鼠的免疫細胞、內皮細胞以及紅血球都可以滲進多孔性結構的ECM內部。ECM/control內免疫細胞的數目明顯的比其他兩種試片來得多,但新生血管滲入包覆bFGF或Re的 ECM密度、深度以及hemoglobin含量,都明顯的比未包覆任何生長因子的ECM 來得多,這個現象顯示了包覆bFGF或Re的ECM可以明顯促進ECM內的血管增生。
植入1個月後,ECM/Re的外層孔洞結構內免疫細胞已經消失殆盡,取而代之的為宿主遷徙進來的纖維母細胞,以及其所分泌的結締組織和供應養分與氧氣的新生微血管。另外在ECM/bFGF的外層結構內也可以觀察到組織再生的情形,但仍有相當數目的免疫細胞存在,而ECM/control結構內組織再生的情形則較不明顯且免疫反應仍很強烈。另外ECM/Re在植入1個月後,其結構內新生血管密度與hemoglobin含量,皆明顯的比植入1星期後的量來得多。相對地,ECM/bFGF在植入1個月與1星期後的新生血管並沒有明顯的增加,而ECM/control內的血管增生情形並不顯著。此結果顯示了,Re在ECM內能夠持續有效的促進血管增生,而bFGF可能由於其穩定性不佳很快的失去活性,無法持續有效的促進ECM內的血管增生。
上述體外與體內實驗結果顯示,Rg1與Re皆為有效促進血管增生的新型生長因子,且可加速組織再生及修復的速率。未來我們可利用Rg1與Re親疏水性質的不同,分別應用於親水性與疏水性材料的包覆釋放。
參考文獻
1.Vacanti JP, Vacanti CA. The challenge of tissue engineering. In: Lanza RP, Langer R, Chick WL, editors. Principles of tissue engineering. R.G. Landes Company, Austin: Academic Press, 1997. p. 1-5.
2.Langer R. Tissue engineering. Science 1993;260:920-6.
3. Tabata, Y. Necessity of drug delivery dystems to tissue engineering. In: Park KD, Kwon IC, Yui N, Jeong SY, Park K, editors. Biomaterials and drug delivery toward new mellenium. Korea: Han Rim Won Publishing Co., 2000. p. 531-44.
4. Kofidis T, Akhyari P, Boublik J, Theodorou P, Martin U, Ruhparwar A, Fischer S, Eschenhagen T, Kubis HP, Kraft T, Leyh R, Haverich A. In vitro engineering of heart muscle: artificial myocardial tissue. J Thorac Cardiov Sur 2002;124:63-9.
5. Li RK, Yau TM, Weisel RD, Mickle DA, Sakai T, Choi A, Jia ZQ. Construction of a bioengineered cardiac graft. J Thorac Cardiov Sur 2000;119:368-75.
6. Freed LE, Vunjak-Novakovic G. Tissue culture bioreactors: chondrogenesis as a model system. In: Lanza RP, Langer R, Chick WL, editors. Principles of tissue engineering. R.G. Landes Company, Austin: Academic Press, 1997. p. 151-65.
7. Chapekar MS. Tissue engineering: challenges and opportunities. J Biomed Mater Res 2000;53:617-20.
8. Soker S, Machado M, Atala A, Systems for therapeutic angiogenesis in tissue engineering. World J Urol 2000;18:10-18.
9. Heldin CH, Usuki K, Miyazono K. Platelet-derived endothelial cell growth factor. J Cell Biochem 1991;47:208-10.
10. Kawai K, Suzuki S, Tabata Y, Ikada Y, Nishimura Y. Accelerated tissue regeneration through incorporation of basic fibroblast growth factor-impregnated gelatin microspheres into artificial dermis. Biomaterials 2000;21:489-99.
11. Liao B, Newmark H, Zhou R. Neuroprotective effects of ginseng total saponin and ginsenosides Rb1 and Rg1 on spinal cord neurons in vitro. Exp Neuro 2002;173:224-34.
12. Scott GI, Colligan PB, Ren BH, Ren J. Ginsenosides Rb1 and Re decrease cardiac contraction in adult rat ventricular myocytes: role of nitric oxide. Brit J Pharmacol 2001;134:1159-65.
13. 恩斯特˙D˙普林曾柏格. 人參:永保青春和活力. 台北縣: 小薰書房, 1999.
14. 張維懋, 王致權. 21世紀癌症新剋星:人參皂苷. 台北市: 愛克斯文化, 2002.
15. Liu M, Zhang JT. Effects of ginsenoside Rg1 on c-fos gene expression and cAMP levels in rat hippocampus. Zhongguo Yao Li Xue Bao/Acta Pharmacologica Sinica 1996;17:171-4.
16. Tong LS, Chao CY. Effects of ginsenoside Rg1 of Panax ginseng on mitosis in human blood lymphocytes in vitro. Am J Chinese Med 1980;8:254-67.
17. Nah SY, Oh S. Modulation of G protein alpha-subunit mRNA levels in discrete rat brain regions by cerebroventricular infusion of ginsenoside Rc and Rg1. Neurochem Res 2003;28:691-7.
18. Lee YJ, Chung E, Lee KY, Lee YH, Huh B, Lee SK. Ginsenoside-Rg1, one of the major active molecules from Panax ginseng, is a functional ligand of glucocorticoid receptor. Mol Cell Endocrinol 1997;133:135-40.
19. Losordo DW, Isner JM. Estrogen and angiogenesis: a review. Arterioscl Throm Vas 2001;21:6-12.
20. Cid MC, Schnaper HW, Kleinman HK. Estrogens and the vascular endothelium. Annals NY Acad Sci 2002;966:143-57.
21. Chan RY, Chen WF, Dong A, Guo D, Wong MS. Estrogen-like activity of ginsenoside Rg1 derived from Panax notoginseng. J Clin Endocr Metab 2002;87:3691-5.
22. Morbidelli L, Donnini S, Ziche M. Role of nitric oxide in the modulation of angiogenesis. Curr Pharm Design 2003;9:521-30.
23. Babaei S, Stewart DJ. Overexpression of endothelial NO synthase induces angiogenesis in a co-culture model. Cardiovasc Res 2002;55:190-200.
24. Miyamoto E, Odashima S, Kitagawa I, Tsuji A. Stability kinetics of ginsenosides in aqueous solution. J Pharm Sci 1984;73:409-10.
25. Kitagawa I, Taniyama T, Yoshikawa M, Ikenishi Y, Nakagawa Y. Chemical studies on crude drug processing. VI. Chemical structures of malonyl-ginsenosides Rb1, Rb2, Rc, and Rd isolated from the root of Panax ginseng C. A. Meyer. Chem Pharm Bull 1989;37:2961-70.
26. Jin ZQ. The action of ginsenoside Re on inotropy and chronotropy of isolated atria prepared from guinea pigs. Planta Med 1996;62:314-6.
27. Lee YJ, Jin YR, Lim WC, Ji SM, Cho JY, Ban JJ, Lee SK. Ginsenoside Rc and Re stimulate c-fos expression in MCF-7 human breast carcinoma cells. Arch Pharmacal Res 2003;26:53-7.
28. 陳榮福.中藥藥理學. 台北縣: 國立中國醫藥研究所, 1991. p. 113-264.
29. Morisaki N, Watanabe S, Tezuka M, Zenibayashi M, Shiina R, Koyama N, Kanzaki T, Saito Y. Mechanism of angiogenic effects of saponin from ginseng Radix rubra in human umbilical vein endothelial cells. Brit J Pharmacol 1995;115:1188-93.
30. Kalluri R. Basement membranes: Structure, assembly and role in tumour angiogenesis. Nat Rev Cancer 2003;3:422-33.
31. Piper JS, Hafman T, Veerkamp JH, Kuppevelt V. Development of tailor-made collagen glycosaminoglycan matrices: EDC/NHS crosslinking and ultrastructural aspects. Biomaterials 2000;21:581- 93.
32. Kim BS, Baez CE, Atala A. Biomaterials for tissue engineering. World J Urol 2000;18:2-9.
33. Schmidt CE, Baier JM. Acellular vascular tissues: natural biomaterials for tissue repair and tissue engineering. Biomaterials 2000;21:2215-31.
34. 朱家瑜, 潘俊亮, 林亮宇. 組織學. 台北市: 藝軒圖書出版社, 1992. p. 42-56.
35. Hay ED. Cell Biology of extracellular matrix, 2nd ed. New York: Plenum Press, 1991. p. 45-71.
36. Becker WM, Kleinsmith LJ, Hardin J. The world of the cell, 4th ed. San Francisco: Addison Wesley Longman, Inc., 2000. p. 301-3.
37. Sung HW, Huang RN, Huang LLH, Tsai CC, Chiu CT. Feasibility study of a natural crosslinking reagent for biological tissue fixation. J Biomed Mater Res 1998;42:560-7.
38. Chang Y, Tsai CC, Liang HC, Sung HW. Reconstruction of the right ventricular outflow tract with a bovine jugular vein graft fixed with a naturally occurring crosslinking agent (genipin) in a canine model. J Thorac Cardiov Sur 2001;122:1208-18.
39. Chang Y, Tsai CC, Liang HC, Sung HW. In vivo evaluation of cellular and acellular bovine pericardia fixed with a naturally occurring crosslinking agent (genipin). Biomaterials 2002;23:2447- 57.
40. Chang Y, Lee MH, Liang HC, Hsu CK, Sung HW. Acellular bovine pericardia with distinct porous structures fixed with genipin as an extracellular matrix. Tissue Eng, in press.
41. Liang HC, Chang Y, Hsu CK, Lee MH, Sung HW. Effects of crosslinking degree of an acellular biological tissue on its tissue regeneration pattern. Biomaterials 2004;25:3541-52.
42. Hagan S, Hiscott P, Sheridan CM, Wong D, Grierson I, McGalliard J. Effects of the matricellular protein SPARC on human retinal pigment epithelial cell behavior. Mol Vis 2003;9:87-92.
43. Wajih N, Sane DC. Angiostatin selectively inhibits signaling by hepatocyte growth factor in endothelial and smooth muscle cells. Blood 2003;101:1857-63.
44. Riss TL, Moravec RA. Comparison of MTT, XTT, and a novel tetrazolium compound MTS for in vitro proliferation and chemosensitivity assays. Mol Biol Cell 1992;3(suppl)184.
45. Davidoff AM, Leary MA, Ng CYC, Vanin EF. Gene therapy-mediated expression by tumor cells of the angiogenesis inhibitor flk-1 results in inhibition of neuroblastoma growth in vivo. J Pediatr Surg 2001;36:30-6.
46. Okamoto H, Yatomi Y, Ohmori T, Satoh K, Matsumoto Y, Ozaki Y. Sphingosine 1-phosphate stimulates G(i)- and Rho-mediated vascular endothelial cell spreading and migration. Thromb Res 2000;99:259-65.
47. Wolf K, Mazo I, Leung H, Engelke K, von Andrian UH, Deryugina EI, Strongin AY, Brocker EB, Friedl P. Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J Cell Biol 2003;160:267-77.
48. Morales DE, McGowan KA, Grant DS, Maheshwari S, Bhartiya D, Cid MC, Kleinman HK, Schnaper HW. Estrogen promotes angiogenic activity in human umbilical vein endothelial cells in vitro and in a murine model. Circulation 1995;91:755-63.
49. Berridge MV, Tan AS. Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction. Arch Biochem Biophys 1993;303:474-82.
50. Lee OH, Kim YM, Lee YM, Moon EJ, Lee DJ, Kim JH,. Kim KW, Kwon YG. Sphingosine 1-phosphate induces angiogenesis: its angiogenic action and signaling mechanism in human umbilical vein endothelial cells. Biochem Biophys Res Commun 1999;264: 743-50.
51. Grant DS, Lelkes PI, Fukuda K, Kleinman HK. Intracellular mechanisms involved in basement membrane induced blood vessel differentiation in vitro. In Vitro Cell Dev Biol 1991;27A:327-36.
52. Martin I, Shastri VP, Padera RF. Selective differentiation of etmammalian bone marrow stromal cells cultured on three-dimensional polymer foams. J Biomed Mater Res 2001;55: 229-35.
53. Meus PJ, Wernly JA, Campbell CD, Takanashi Y, Pick RL, Qui ZK, Replogle RL. Long-term evaluation of pericardial substitutes. J Thorac Cardiovasc Surg 1983;85:54-8.
54. Dorogosz WJ, Lindgren SE. US Patent No. 5 413 960, 1995.
55. Silvestro L, Viano I, Macario M, Colangelo D, Montrucchio G, Panico S, Fantozzi R. Effects of heparin and its desulfated derivatives on leukocyte-endothelial adhesion. Semin Thromb Hemost 1994;20:254-8.
56. Nimini ME, Cheung D, Strates B, Kodama M, Sheikh K. Bioprosthesis derived from cross-linked and chemically modified collagenous tissues. In: Nimi ME, editor. Collagen, vol. III. Boca Raton, FL: CRC Press, 1998. p. 1-38.
57. Chan-Myers HB, Guida SH, Roberts CG, Thyagarajan K, Tu R, Quijano RC. Sterilization of a small caliber vascular graft with a polyepoxy compond. ASAIO J 1992;38:116-9.
58. Bonnabeau RC, Armanious AW, Tarnay TJ. Partial replacement of pericardium with dura substitute. J Thorac Cardiovasc Surg 1973;66: 196-201.
59. Crosby WH, Munn JI, Furth FW. Standardizing a method for clinical hemoglobinometry. US Armed Forces Med J 1954;5:693.
60. Lee KY, Halberstadt CR, Holder WD. Breast reconstruction. In: Lanza RP, Langer R, Vacanti J. editors. Principle of tissue engineering, 2nd ed. San Diego: Academic, 2000. p. 409-23