研究生: |
陳欣煒 Hsin-Wei Chen |
---|---|
論文名稱: |
採用直接數位除頻電路之分數型頻率合成器 A Fractional-N Frequency Synthesizer with Direct Synthesis Divider |
指導教授: |
黃柏鈞
Po-Chiun Huang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 119 |
中文關鍵詞: | 頻率合成器 、分數型架構 、直接數位除頻電路 、相位雜訊 、相位內插 、分數誤差補償 |
外文關鍵詞: | Frequency Synthesizer, Fractional-N architecture, Direct Synthesis Divider, Phase Noise, Phase Interpolation, Fractional Error Compensation |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
頻率合成器是無線通訊系統中一個重要的構成單元,負責執行高頻載波與基頻信號之間的轉換。其設計優劣決定了信號轉換的品質與傳輸系統的性能。在一個射頻無線傳輸系統中,頻率合成器大多以鎖相迴路的型式來實現。在設計上,以和差調變分數型鎖相迴路架構為目前的主流。此種架構,結合了多模數除頻器(Multi-modulus divider)與和差調變器(Σ-Δ modulator),來實現一個分數型除頻電路。然而,此種架構最大的限制在於分數型誤差(Fractional error)的產生。此誤差的存在,對於鎖相迴路頻寬的延伸有著不利的影響。
本論文研究之方向,著重於分數型誤差的產生與消除。為突破前述架構在迴路頻寬上的限制,我們提出一個利用直接數位合成方式來實現之分數型除頻電路。此除頻電路,藉由其相位內差的機制,能實現一個接近於真實分數除頻器的行為,並能有效的降低分數型誤差的產生,來達到誤差補償的效果。透過線性系統分析與行為的模擬,我們能初步確立此架構之可行性,並得出分數補償的效果。
在電路上,本論文實現了一個輸出頻率在4.63GHz到5.56GHz分數型頻率合成器原型,主要採用TSMC 0.18μm CMOS製程來進行設計及佈局。本頻率合成器採用一10MHz之參考時脈頻率,電路之頻率調整解析度可達18.6KHz。並且,可在16μsec之時間內,完成頻率鎖定的動作。相位雜訊的強度上,於頻寬範圍內可達-80dBc/Hz。本電路包含I/O pad之晶片面積共計2.1mm2 (若不含I/O PAD 則為1.15mm2)。在電路正常動作下,功率消耗約為52.8mW。晶片實際量測之結果顯示其降低分數誤差的效果,與行為模擬所得之結果大致相符。
在量測的過程中,我們也發現了一些先天上的限制,這些限制影響了本架構的應用層面。針對這些問題,我們也提出一些看法與可改進的方向以助於後續相關的研究。
Frequency synthesizer is in charge of generating a high quality signal source for passband transceiver up- and down-conversions. For a high resolution synthesizer design, the Σ-Δ fractional-N structure is widely adopted. Combining a Σ-Δ modulator with the multi-modulus divider, a frequency divider is capable of emulating fractional multiple of reference frequency in the PLL output. However, the fractional error, which inevitably comes from the timing quantization, dominates the PLL output noise and limits the loop bandwidth.
In this thesis, efforts are dedicated to the reduction of fractional error for PLL bandwidth extension. A new fractional division technique is proposed and implemented in TSMC 0.18μm CMOS process. By applying the direct synthesis circuit in PLL, a nearly true fractional divider can be achieved. The fractional error is compensated via phase interpolation and the error reduction can be conceptually proven by behavioral simulation.
The idea is validated in silicon measurement. In this work, a fractional-N frequency synthesizer is realized. Measurement results show that the synthesizer can generate frequency signals ranging from 4.63GHz to 5.56GHz with 18.6KHz output frequency resolution and 16μsec settling time. The in-band phase noise can achieve -80dBc/Hz. Chip area of this synthesizer is 2.1mm2, including I/O pad. This circuit consumes a power of 52.8mW under normal operation.
During the design and measurement, some practical issues about this architecture are also discovered. The suitable applications are therefore restricted. Toward those issues, some discussions are addressed for the future improvement.
[1] R. E. Best, Phase Locked Loops. McGraW Hill, 2003.
[2] J. Tierney et al., “A Digital Frequency Synthesizer,” IEEE Trans. Audio Electroacoust., vol. 19, pp. 49 – 57, Mar. 1971.
[3] B. Muer and M. Steyaert, CMOS Fractional-N Synthesizer. KLUWER ACADEMIC PUBLISHERS, 2003.
[4] W. F. Egan, Frequency Synthesis By Phase Lock. Wiley Press, 2000.
[5] S. E. Meninger and M. H. Perrott, “A 1-MHZ Bandwidth 3.6-GHz 0.18-μm CMOS Fractional-N Synthesizer Utilizing a Hybrid PFD/DAC Structure for Reduced Broadband Phase Noise,” IEEE J. Solid-State Circuits, vol. 41, pp. 966–980, Apr. 2006.
[6] M. Gupta and B.-S. Song, “A 1.8-GHz Spur-Cancelled Fractional-N Frequency SynthesizerWith LMS-Based DAC Gain Calibration,” IEEE J. Solid-State Circuits, vol. 41, pp.2842–2851, Dec. 2006.
[7] E. Temporiti, G. Albasini, I. Bietti, R. Castello, and M. Colombo, “A 700-kHz Bandwidth Σ − Δ Fractional Synthesizer With Spurs Compensation and Linearization Techniques for WCDMA Applications,” IEEE J. Solid-State Circuits, vol. 39, pp. 1446–1454, Sept. 2004.
[8] S. Pamarti, L. Jansson, and I. Galton, “A Wideband 2.4-GHz Delta-Sigma Fractional-N PLLWith 1-Mb/s In-Loop Modulation,” IEEE J. Solid-State Circuits, vol. 39, pp. 49–62, Jan. 2004.
[9] Y. C. Yang, S. A. Yu, Y. H. Liu, T. Wang, and S. S. Lu, “A Quantization Noise Suppression Technique for Σ − Δ Fractional-N Frequency Synthesizers,” IEEE J. Solid-State Circuits, vol. 41, pp. 2500–2511, Nov. 2006.
[10] C. Y. Yang, J. W. Chen, and M. T. Tsai, “A High-frequency Phase-compensation Fractional Frequency Synthesizer,” presented at the IEEE ISCAS, May 2005, pp. 5091 –5094.
[11] M. H. Perrott, http://www.mtl.mit.edu/researchgroups/perrottgroup/tools.html.
[12] C. Y. Chou, “A Direct Digital Fractional Divider and Its Application to Frequency Synthesizer,”Master’s thesis, NTHU, HsinChu, Taiwan, 2005.
[13] H. T. Nicholas III and H. Samueli, “A 150-MHz Direct Digital Frequency Synthesizer in 1.25μm CMOS with -90dBc Spurious Performance,” IEEE J. Solid-State Circuits, vol. 26, pp. 1959 – 1969, Dec. 1991.
[14] H. T. Nicholas III and H. Samueli, “An Analysis of the Output Spectrum of Direct Digital Frequency Synthesizers in the Presence of Phase-Accumulator Truncation,” presented at the Proc. 41st annual Frequency Control Symposium USERACOM Ft. Monmouth, May 1987, pp. 495 – 504.
[15] Y. Song and B. Kim, “A 14-bit digital frequency synthesizer with sigma-delta noise shaping,” IEEE J. Solid-State Circuits, vol. 39, pp. 847–851, May 2004.
[16] M. Perrott, M. D. Trott, and C. G. Sodini, “A Modeling Approach for Σ-Δ Fractional-N Frequency Synthesizers Allowing Straightforward Noise Analysis,” IEEE J. Solid-State Circuits, pp. 1028–1038, Aug. 2002.
[17] M. H. Perrott, “Behavioral Simulation of Fractional-N Frequency Synthesizers and Other PLL Circuits,” IEEE Des. Test. Comput., vol. 19, pp. 74–83, 2002.
[18] D. F. Peterson, “Varactor peoperties for wide-band linear-tuning microwave VCOs,,” IEEE Trans. Microwave Theory Tech., vol. 28, pp. 110–119, Feb. 1980.
[19] S. Levantino, C.samori, A. Bonfanti, S. Gierkink, A. L. Lacaita, and V. Boccuzzi, “Frequency Dependence on Bias Current in 5-GHz CMOS VCOs: Impact on Tuning Range and Fliker Noise Upconversion,” IEEE J. Solid-State Circuits, vol. 37, pp. 1003–1011, Aug. 2002.
[20] A. Kral, F. Behbahani, and A. A. Abidi, “RF-CMOS Oscillators with Switched Tuning,” presented at the Custom Integrated Circuits Conference, 1998, pp. 555 – 558.
[21] B. Razavi, Design of Integrated Circuits for Optical Communications. McGraW Hill, 2003.
[22] A. Hajimiri and T. H. Lee, “A General Theory of Phase Noise in Electrical Oscillators,” IEEE J. Solid-State Circuits, vol. 33, pp. 179–194, Feb. 1998.
[23] A. Hajimiri and T. H. Lee, “Design Issues in CMOS Differential LC Oscillators,” IEEE J. Solid-State Circuits, vol. 34, pp. 717–724, May 1999.
[24] J. Maget et al., “Influence of novel MOS varactors on performance of a fully-integrated UMTS VCO in standard 0.25μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 37, pp. 953–958, July 2002.
[25] N. Fong et al., “Design of Wide-Band CMOS VCO for Multiband Wireless LAN Applications,” IEEE J. Solid-State Circuits, vol. 38, pp. 1333–1342, Aug. 2003.
[26] P. Delatte et al., “A Low-power 5 GHz CMOS LC-VCO Optimized for High-resistivity SOI Substrates ,” in Proc. of European Solid-State Circuits Conference (ESSCIRC), Sept. 2005, pp. 395–398.
[27] M. Perrott, “Design, Simulation, and Bandwidth Extension Methods for Fractional-N Frequency Synthesizers,” in IEEE SSCS Taipei Chapter Short Course, Mar. 2005, pp. 41–42.