簡易檢索 / 詳目顯示

研究生: 陳偉誠
論文名稱: 堆疊式球柵陣列構裝體之脫層研究 – 材料與幾何參數設計
A Delamination Study of Stacked BGA Packages – Design of Material and Geometric Parameters
指導教授: 桑慧敏
口試委員: 王銘宗
楊朝龍
學位類別: 碩士
Master
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 52
中文關鍵詞: 積體電路封裝脫層堆疊式球柵陣列構裝體有限元素法實驗設計
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 積體電路(Integrated Circuit, IC)封裝產業中堆疊式球柵陣列(Stacked BGA)構裝體具有面積小及記憶體容量大等優點,但其脫層機率也比傳統構裝體高。有鑑於此,本研究探討構裝體之脫層及熱應力與相關材料及幾何間的關係。本研究利用有限元素分析軟體(ANSYS)模擬構裝體熱應力分布,再透過實驗設計建構熱應力與相關材料及幾何之迴歸模式,並進一步探討因子組合之交互作用。本論文研究成果包括:
    (1)依據本研究所模擬之構裝體熱應力分布與實際構裝體脫層檢測圖,可確認構裝體之脫層皆發生於晶片角落與兩晶片交疊夾角處等熱應力大(範圍為231.16 牛頓以
    上)之位置。
    (2)所有因子中塑模膠料熱膨脹係數是影響構裝體熱應力最重要之因子。
    (3)因子間具交互作用。當塑模膠料熱膨脹係數變小,塑模膠料楊氏模數之選用也由
    楊氏模數小改為楊氏模數大的塑模膠料。當晶片面積變小,塑模膠料厚度也由選用薄的塑模膠料改為厚的塑模膠料。當晶片面積變小,晶片楊氏模數之選用也由
    楊氏模數小改為楊氏模數大的晶片。


    目錄 摘要i 英文摘要ii 目錄iii 表目錄v 圖目錄vi 第1 章緒論1 1.1 前言. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 IC構裝體之功能. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 積體電路封裝技術. . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3.1 球柵陣列封裝技術. . . . . . . . . . . . . . . . . . . . . . . . 3 1.3.2 3D堆疊封裝技術. . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 堆疊式球柵陣列構裝體之封裝製程. . . . . . . . . . . . . . . . . . . . 5 1.5 構裝體脫層現象. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.6 研究動機與目的. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.7 論文架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 第2 章文獻探討10 2.1 IC構裝體材料參數設計. . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 IC構裝體幾何參數設計. . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3 綜合評論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 第3 章理論基礎14 3.1 材料力學相關名詞定義. . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.1.1 蒲松比(Poisson’s ratio) . . . . . . . . . . . . . . . . . . . . . 14 3.1.2 楊氏模數(Young’s modulus) . . . . . . . . . . . . . . . . . . 15 3.1.3 剪力模數(Shear modulus) . . . . . . . . . . . . . . . . . . . . 16 3.1.4 熱膨脹係數(Coefficient of thermal expansion) . . . . . . . . . 17 3.2 有限元素法–熱應力計算. . . . . . . . . . . . . . . . . . . . . . . . . 18 iii 3.2.1 有限元素法之熱應變分析. . . . . . . . . . . . . . . . . . . . 18 3.2.2 有限元素法之熱應力分析. . . . . . . . . . . . . . . . . . . . 19 3.3 實驗設計與分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 第4 章研究方法21 4.1 Stacked BGA 構裝體之ANSYS 模擬分析法. . . . . . . . . . . . . . 21 4.1.1 基本假設. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.1.2 模型架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.1.3 ANSYS有限元素分析軟體. . . . . . . . . . . . . . . . . . . . 23 4.2 實驗設計. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.2.1 材料性質因子之實驗設計. . . . . . . . . . . . . . . . . . . . 29 4.2.2 幾何特性因子之實驗設計. . . . . . . . . . . . . . . . . . . . 30 4.2.3 綜合材料性質與幾何特性因子之實驗設計. . . . . . . . . . . . 30 第5 章研究結果與分析31 5.1 Stacked BGA 構裝體的熱應力與脫層間關係. . . . . . . . . . . . . . 31 5.2 球柵陣列構裝體之實驗設計分析. . . . . . . . . . . . . . . . . . . . . 34 5.2.1 模型一: 材料性質因子. . . . . . . . . . . . . . . . . . . . . . 34 5.2.2 模型二: 幾何特性因子. . . . . . . . . . . . . . . . . . . . . . 37 5.2.3 模型三: 綜合材料性質與幾何特性因子. . . . . . . . . . . . . 38 第6 章結論與未來展望44 6.1 結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 6.2 未來展望. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 參考文獻47

    [1] C. P. Yeh(1996), “Parametric Finite Element Analysis of Flip Chip Reliability,” The International Journal of Microcircuits and Electronic Packaging, vol. 19, pp. 120-127.
    [2] D. C. Montgomery(2005), “Design and Analysis of Experiments,” 5th ed. John Wiley & Sons, pp. 778-780.
    [3] J. H. Lau(1990), “Thermal Stress Analysis of Plastic Leaded Chip Carriers,” Intersociety Conference on Thermal Phenomena, pp. 57-66.
    [4] J. H. Okura, K. Darbha, S. Shetty, A. Dasgupta(1999), “Guidelines to Select Underfills for Flip Chip on Board Assemblies,” IEEE, Electronic Components and Technology Conference, pp. 589-594.
    [5] K. N. Chiang, Z. N. Liu, J. D. Lin and Y. T. Lin(2000),“A New Approach for No-Underfill Flip Chip Package Design,” Power Mechanical Engineering, National Tsing Hua University.
    [6] L. L. Mercado and V. Sarihan(1999),“Predictive Design of Flip-Chip PBGA for High Reliability and Low Cost,” Electronic Components and Technology Conference, pp. 342-348.
    [7] L. L. Mercado, H. Wieser, T. Hauck(2001), “Mold Delamination and Die Fracture Analysis of Mechatronic Packages,” IEEE Electronic Component and Technology Conference.
    [8] M. W. Lee, J. Y. Kim, J. D. Kim and C. H. Lee(2010), “Below 45nm low-k layer stress minimization guide for high-performance flip-chip packages with copper pillar bumping,” Electronic Components and Technology Conference(ECTC), 2010 Proceedings 60th, pp. 1623-1630.
    [9] S. Timoshenko(1925), “Analysis of Bi-Metal Thermostats,” J. Opt. Soc. Am.,vol. 11, pp. 233-255.
    [10] S. Groothuis, W. Schroen, and M. Murtuza(1985), “Computer Aided Stress Modeling for Optimizing Plastic Package Reliability,” IEEE/IRPSConference, pp. 184-191.
    [11] T. Y. Lin, Z. P. Xiong, Y. F. Yao(2003), “Failure Analysis of Full Delamination on the Stacked die Leaded Packages,” Transactions of the ASME Journal of electronic packing, vol. 125, pp. 392-399.
    [12] T. Y. Pan and Y. H. Pao(1990), “Deformation in Multilayer Stacked Assemblies,” Journal of Electronic Packaging, vol. 112, pp. 30-34.
    [13] W. T. Chen and C. W. Nelson(1979), “Thermal Stress in Bonded Joints,” IBM Journal of Research and Development, vol. 23, pp. 179-188.
    [14] W. S. Lee, I. Y. Han, J. Yu, S. J. Kim, and K. Y. Byun(2006), “Thermal Characterization of Thermally Conductive Underfill for a Flip-Chip Package Using Novel Temperature Sensing Technique,” Thermochimica Acta, vol. 455, pp. 148-155.
    [15] Y. He(2005), “Thermal Characterization of Overmolded Underfill Materials for Stacked Chip Scale Packages,” Thermochimica Acta, vol. 433, pp. 98-104.
    [16] 李承傑(1995), “三維導線架型式構裝翹曲與應力分析,” 雲林科技大學機械工程研究所碩士論文.
    [17] 陳潔蓓(2002), “導線架型3D 堆疊構裝設計與脫層之預防研究,” 元智大學機械工程研究所碩士論文.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE