簡易檢索 / 詳目顯示

研究生: 蘇恆毅
Heng-Yi Su
論文名稱: 利用表面改質技術自組裝奈米複合管
Synthesizing of Carbon Composite Nanotubes via Self-Assembly Surface Modification
指導教授: 施漢章
Han C. Shih
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 86
中文關鍵詞: 奈米碳管奈米碳纖自組裝表面改質奈米團簇
外文關鍵詞: Carbon nanotube, Carbon nanofiber, self-assembly, surface modification, nanocluster
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 奈米碳材藉由酸化法以及氧化法的表面改質技術,自組裝奈米金
    屬氧化物的機制,在本論文中將做詳細的探討。從酸化法的表面改質
    技術,我們可以確認奈米碳材的表面改質,對於鍵結奈米金屬氧化物
    顆粒的製程是有效的;另外,藉由不同氧化程度的氧化法表面改質製
    程,我們可以知道在氧化程度(O/C 比例)提升的情況下,對於鍵結
    奈米金屬氧化物顆粒的效果越好。另外,由於碳材表面鍵結有機官能
    基影響,使得碳材的表面特性變為親水性,藉由有機官能基與金屬離
    子發生離子吸附作用以及凡德瓦引力作用,使碳材得以自組裝奈米金
    屬氧化物顆粒,其粒徑約5-10 nm。
    成長奈米團簇的製程,是以奈米碳管自組裝鎳的氧化物顆粒為觸
    媒,以及甲苯為前驅物,在900 度的溫度下成長奈米團簇。未經表面
    改質處理的碳管,在成長後並沒有團簇出現,而是表面累積一層非晶
    質碳;而經過表面改質並鍵結鎳的氧化物顆粒成長的奈米團簇,其結
    構分為管狀結構物、以及棒狀結構物,產生該結構物的原因,與甲苯
    在900 度的成長溫度下裂解不完全的因素有極大的關係。在奈米團簇
    的BET 量測實驗中,由於鍵結較高程度鎳的氧化物顆粒的試片擁有
    較密集的奈米團簇,所以其比表面積值會比原始碳管高;且在應用性
    上,奈米碳管與奈米團簇之間的附著性較高,所以應用性也越好。


    Through self-assembly monolayer surface treatment, metal oxide
    nanoparticles uniformly dispersed onto carbon nanotubes (CNTs) surface
    are investigated in this paper. Via acid treatment, it is confirmed metal
    oxide nanoparticles are effectively bonded on the CNTs. By further
    oxidization treatment, it was found that better bonding effects are resulted
    from the longer oxidization time (higher O/C ratio). Surface bonding
    functional groups convert the surface property of CNTs from
    hydrophobic to hydrophilic and they act an important role to link with
    metal ions via the ionic adsorption and van der Walls effects. The average
    diameter of the bonding particles through the self-assembly monolayer
    surface treatment is about 5-10 nm.
    Through nickel oxide nanoparticles bonded on the surface of the CNTs
    and the precursor gas of toluene in 900℃, carbon nanoclusters can be
    synthesized on the CNTs. After synthesizing, no carbon nanoclusters
    were observed but merely a layer of accumulated amorphous carbon on
    the sample was formed without any tin oxide nanoparticles bonded on the
    CNTs. It was observed that the morphology of the nanoclusters grown through the catalysts exhibits tube-like as well as rod-like structures. The
    incomplete thermal cracking level of the toluene sparks off the specific
    structures of the carbon nanoclusters. The more tin oxides bonded on the
    CNTs the more carbon nanoclusters formed. It also contributes to the
    higher BET surface area for better application.

    論文摘要......................i Abstract......................ii 誌謝........................iii 目錄........................v 第一章 緒論.....................1 1.1 奈米科技的定義.................1 1.2 奈米科技的發展過程...............2 1.3 奈米科技的重要意義...............4 1.4 奈米複合材料的發展與表面改質..........8 第二章 文獻回顧..................11 2.1 表面改質介紹..................11 2.1.1 電壓輔助法表面改質..............11 2.1.2 離子濺射法表面改質..............13 2.1.3 化學法表面改質................15 2.1.4 奈米碳管的化學法表面改質...........16 2.2 自組裝介紹...................19 2.2.1 奈米結構的自組裝體系.............19 2.2.2 分子自組裝體系................20 2.3 應用......................22 2.3.1 微影蝕刻應用.................22 2.3.2 生物感測器..................23 2.3.3 儲能材料...................24 第三章 實驗方法與測量儀器.............27 3.1 實驗方法....................27 3.1.1 實驗儀器...................27 3.1.2 實驗設計...................28 3.1.3 實驗流程...................29 3.2 測量儀器....................31 3.2.1 ESCA.....................31 3.2.2 TEM.....................32 3.2.3 BET.....................33 第四章 結果與討論.................36 4.1 化學法表面改質製程...............36 4.1.1 奈米碳纖系統.................37 4.1.2 奈米碳管系統.................40 4.2 氧化法表面改質製程...............45 4.2.1 官能基特性分析................46 4.2.2 不同的改質程度對於鍵結效果的影響.......50 4.3 機制探討....................54 4.3.1 碳管的表面改質機制..............54 4.3.2 自組裝機制..................58 4.3.3 表面改質自組裝機制..............60 4.4 奈米團簇的合成.................61 4.4.1 不同表面改質處理與奈米團簇形貌之關係.....62 4.4.2 奈米團簇的形貌種類..............65 4.4.3 奈米團簇的成長機制..............68 4.4.3.1 無觸媒成長.................68 4.4.3.2 藉由觸媒成長................69 4.4.4 比表面積量測.................76 第五章 總結....................78 5.1 結語......................78 5.2 未來展望....................81 第六章 參考資料..................83

    [1] 顧寧, 付德剛, 張海黔, 奈米技術與應用 2003 年
    [2] R. Kubo, J. Phys. Soc., Jpn. 17, 975 (1962)
    [3] P. S. Kopel, V. D. Kulakovskii, B. Ya. Mel’tser, B. N. Shepel, Fizikai
    Tekhnika Poluprovodnikov (Sankt-Peterburg) 20, 1184 (1986)
    [4] A. J. Bradley, A. H. Jay, Proc. Roy. Soc., Loton, 210-32, A136 (1932)
    [5] Burgess, Houston, Chemistry & Industry, 22, 733 (1990)
    [6] Ijima S., Nature, 354, 56 (1991)
    [7] L. H. Chan, K. H. Hong, D. Q. Xiao, T. C. Lin, S. H. Lai, W. J. Hsieh,
    and H. C. Shih, Phys. Rev. B: Condensed Matter and Materials
    Physics, 70, 125408/1 (2004)
    [8] L. H. Chan, K. H. Hong, D. Q. Xiao, W. J. Hsieh, S. H. Lai, H. C.
    Shih, T. C. Lin, F, S. Shieu, K. J. Chen, and H. C. Cheng, Appl. Phys.
    Lett., 82, 4334 (2003)
    [9] V. N. Popov, Materials Science and Engineering R, 43, 61 (2004)
    [10] J. M. Chen, C. T. Hsieh, H. W. Huang, Y. H. Huang, H. H. Lin, M. H.
    Liu, S. C. Liao, H. C. Shih, U. S. Pat. Appl. Publ., 13pp (2004)
    [11] L. H. Chan, K. H. Hong, S. H. Lai, X. W. Liu, and H. C. Shih, Thin
    Solid Films, 423, 27 (2003)
    [12] 馬振基, 奈米材料科技原理與應用 2003 年
    [13] 曹茂盛, 關長斌, 徐甲強, 奈米材料導論 2002 年
    [14] J. L. Huang, Y. E. Sung, and C. M. Lieber, Appl. Phys. Lett., 61, 1528
    (1992)
    [15] L. S. Liao, M. K. Fung, L. F. Cheng, C. S. Lee, S. T. Lee, M.
    Inbasekaran, E. P. Woo, and W. W. Wu, Appl. Phys. Lett., 77, 3191
    (2000)
    [16] J. Heitz, H. Niino, and A. Yabe, Appl. Phys. Lett., 68, 2648 (1996)
    [17] K. Boring, Appl. Phys. Lett., 60, 1553 (1992)
    [18] J. Heitz, H. Niino, and A. Yabe, Appl. Phys. Lett., 68, 2648 (1996)
    [19] S. Banerjee, and S. S. Wong, Nano Lett., 2, 199 (2002)
    [20] D. Yan, Y. Zhou, and J. Hou, Science, 303, 65 (2004)
    [21] S. Park, J.-H. Lim, S.-W. Chung, and C. A. Mirkin, Science, 303, 348
    (2004)
    [22] Y. Jia, and X.-Y. Liu, Appl. Phys. Lett., 86, 023903 (2005)
    [23] S. Jun, Y. Hong, H. Imamura, B.-Y. Ha, J. Bechhoefer, and P. Chen,
    Biophys. J. 87, 1249 (2004)
    [24] E. Leontidis, M. Orphanou, T. K. Leodidou, F. Krumeich, and W.
    Caseri, Nano Lett., 3, 569 (2003)
    [25] S. Shenogin, A. Bodapati, L. Xue, R. Ozisik, and P. Keblinski, Appl.
    Phys. Lett. 85, 2229 (2004)
    [26] Y. Lin, H. Skaff, T. Emrick, A. D. Dinsomre, and T. P. Russell,
    Science, 299, 226 (2003)
    [27] W.-Q. Han, and A. Zettl, Nano Lett., 3, 681 (2003)
    [28] Y. Gogotsi, N. Naguib, and J. A. Libera, Chem. Phys. Lett., 365, 354
    (2002)
    [29] L. H. Radzilowski, and S. I. Stupp, Macromolecules, 27, 7747 (1994)
    [30]H. Ye, H. Lam, N. Titchenal, Y. Gogotsi, and F. Ko, Appl. Phys. Lett.,
    85, 1775 (2004)
    [31]H. Hu, B. Zhao, M. A. Hamon, K. Kamaras, M. E. Itkis, and R. C.
    Haddon, J. Am. Chem. Soc., 125, 14893 (2003)
    [32] O. Hamack, I. Raible, A. Yasuda, and T. Vossmeyer, Appl. Phys. Lett.,
    86, 034108 (2005)
    [33] S. Li, P. He, J. Dong, Z. Guo, and L. Dai, J. Am. Chem. Soc., 127, 14
    (2005)
    [34] M. J. Moghaddam, S. Tayler, M. Gao, S. Huang, L. Dai, and M. J.
    McCall, Nano Lett., 4, 89, 2004
    [35] H. Shi, W.-B. Tsai, M. D. Garrison, S. Ferrari, and B. D. Ratner,
    Nature, 398, 593 (1999)
    [36] R. J. Chen, Y. Zhang, D. Wang, and H. Dai, J. Am. Chem. Soc., 123,
    3838 (2001)
    [37] W. Chen, C. H. Tzang, J. Tang, M. Yang, and S. T. Lee, Appl. Phys.
    Lett., 86, 103114 (2005)
    [38] T. Maddanimath, G. Ramanath, and K. Vijayamohanan, Chem. Phys.
    Lett., 396, 277 (2004)
    [39] C. T. Hsieh, and H. Teng, Carbon 40, 667 (2002)
    [40] M. Zaw, and B. Chiswell, Talanta, 42, 27 (1995)
    [41]M. F. Toney, C. M. Mate, K. A. Leach, and D. Pocker, Journal of
    Colloid and Interface Science, 225, 219 (2000)
    [42] T. L. Barr, S. Seal, H. He, and J. Klinowski, Vacuum, 46, 1391 (1995)
    [43] K. Kinoshita, Carbon: Electrochemical and Physicochemical
    Properties John & Wiley, New York, (1987).
    [44] M. L. Toebes, J. M. P. van Heeswijk, J. H. Bitter, A. J. van Dillien,
    and K. P. de Jong, Carbon, 42, 307 (2004).
    [45] D. Rivin, Rubber Chem. Technol., 44, 307 (1971)
    [46] E. F. Kukovitsky, S. G. L’vov and N. A. Sainov, Chem. Phys. Lett.,
    317, 65 (2000)
    [47] H. Terrones, T. Hayashi, M. Munoz-Navia, M. Terrones, Y. A. Kim,
    N. Grobert, R. Kamalakaran, J. Dorantes-Dacila, R. Escudero, M. S.
    Dresselhaus, M. Endo, Chem. Phys. Lett., 343, 241 (2001)
    [48] H. Murayama, and T. Maeda, Nature, 345, 791 (1990)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE