研究生: |
賴信文 Hsin-Wen Lai |
---|---|
論文名稱: |
以原子力顯微術奈米氧化製作氧化鎳結構及其於奈米碳管選區成長的應用 Fabrication of Nickel Oxide Nanostructures by Atomic Force Microscopy Nano-Oxidation and Its Application to the Selective Growth of Carbon Nanotubes |
指導教授: |
林鶴南
Heh-Nan Lin |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2003 |
畢業學年度: | 91 |
語文別: | 中文 |
論文頁數: | 55 |
中文關鍵詞: | 奈米氧化 、奈米碳管 、選區成長 |
外文關鍵詞: | Nano-Oxidation, Carbon Nanotubes, selective growth |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文內容為以原子力顯微術奈米氧化製作氧化鎳結構及其於奈米碳管選區成長上的應用。實驗方法為外加脈衝電壓於鍍有導電薄膜的AFM探針,使鎳薄膜表面產生局部電化學反應生成氧化鎳。為確認反應生成物的化學組成,使用歐傑電子能譜儀與X光能量散佈分析儀進行成份分析,確定生成物為氧化鎳。藉由調整脈衝電壓大小、脈衝時間等參數,可有效控制氧化鎳的成長高度與寬度,進而計算得到氧化鎳的成長速率。此技術可製作各式氧化鎳圖樣,其中所製作的氧化鎳點陣列,平均氧化點直徑可小至50奈米。
為達到選區成長的目的,以奈米氧化製作不同氧化鎳圖樣,利用稀硝酸進行選擇性蝕刻,移除未氧化區域的鎳薄膜,留下氧化鎳圖樣,再以微波加熱化學氣相沉積法(Microwave Heating-Chemical Vapor Deposition, MH-CVD)還原氧化鎳為鎳金屬催化劑並成長奈米碳管。所製作的氧化鎳點陣列,可順利於每一氧化點成長出單根奈米碳管。此技術將可應用於奈米碳管陣列與奈米電子元件等研究領域。
The fabrication of nickel oxide nanostructures by atomic force microscopy (AFM) nano-oxidation and its application to the selective growth of carbon nanotubes (CNTs) is described in this thesis. By applying a voltage pulse between the conductive tip and a nickel film, the local electrochemical processes occurs and transforms nickel into nickel oxide. Auger electron spectroscopy (AES) and X-ray energy dispersive spectroscopy (EDS) are used to characterize the chemical compositions of the produced nickel oxide. By varying the voltages and pulse durations, the size of the nickel oxide can be controlled and nanodots with a diameter of around 50 nm are produced.
After the AFM nano-oxidation process, the nickel film is etched away in a diluted nitric acid whereas the nickel oxide pattern is preserved. The nickel oxide is reduced to nickel to facilitate CNTs growth by microwave heating-chemical vapor deposition (MH-CVD). Consequently, selective growth of well-separated single carbon nanotube is realized. The present method has potential applications in CNT networks, CNT nanodevices, etc.
[1] S. Iijima, Nature, 354, 56 (1991).
[2] H. C. Day, and D. R. Allee, Appl. Phys. Lett., 62, 2691 (1993).
[3] E. A. Rohlfing et al., J. Chem. Phys., 81, 3322 (1984).
[4] H. W. Kroto, J. R. Heath, S. C. O’Brien, R.F. Curl, and R. E. Smalley, Nature, 318, 162 (1985).
[5] S. Iijima, and H. Ichihashi, Nature, 363, 603 (1993).
[6] M. S. Dresselhaus, G. Dresselhaus, and R. Saito, Carbon, 33, 883 (1995).
[7] M. T. Cuberes, R. R. Schlitter, and J. K. Gimzewski, Appl. Phys. Lett., 69, 3016 (1996).
[8] A. Majumdar, P. I. Oden, J. P. Carrejo, L. A. Nagahara, J. J. Graham, and J. Alexander, Appl. Phys. Lett., 61, 2293 (1993).
[9] H. T. Soh, K. W. Guarini, and C. F. Quate, scanning probe lithography (2001).
[10] G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, Phys. Rev. Lett., 49, 57 (1982).
[11] J. A. Dagata, J. Schneir, H. H. Harary, C. J. Evans, M. T. Postek, and J. Bennett, Appl. Phys. Lett., 56, 2001 (1990).
[12] E. S. Snow, and P. M. Campbell, Appl. Phys. Lett., 64, 1932 (1994).
[13] P. M. Campbell, E. S. Snow, and P. J. McMarr, Appl. Phys. Lett., 66, 1388 (1995).
[14] S. C. Minne, H. T. Soh, P. Flueckiger, and C. F. Quate, Appl. Phys. Lett., 66, 703 (1995).
[15] D. Wang, L. Tsau, K. L. Wang, and P. Chow, Appl. Phys. Lett., 67, 1295 (1995).
[16] E. S. Snow, and P. M. Campbell, Science, 270, 1639 (1995).
[17] E. S. Snow, D. Park, and P. M. Campbell, Appl. Phys. Lett., 69, 269 (1995).
[18] M. Rolandi, C. F. Quate, and H. Dai, Adv. Mater., 14, 191 (2002).
[19] Z. F. Ren, Z. P. Huang, J. W. Xu, D. Z. Wang, J. G. Wen, J. H. Wang, L. Calvet, J. Chen, J. F. Klemic, and M. A. Reed, Appl. Phys. Lett., 75, 1086 (1999).
[20] H. Murakami, M. Hirakawa, C. Tanaka, and H. Yamakawa, Appl. Phys. Lett., 76, 1776 (2000).
[21] L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, E. Schaller, L. Schlapbach, H. Kind, J. M. Bonard, and k. Kern, Appl. Phys. Lett., 76, 2071 (2000).
[22] S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, and H. Dai, Science, 283, 512 (1999).
[23] Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush, M. P. Siegal, and P. N. Provencio, Science, 282, 1105 (1998).
[24] Y. Tu, Z. P. Huang, D. Z. Wang, J. G. Wen, and Z. F. Ren, Appl. Phys. Lett., 80, 4018 (2002).
[25] Yu Huang, Xiangfeng Duan, Qingqiao Wei, and Charles M. Lieber1, Science, 291, 630 (2001).
[26] L. A. Nagahara, I. Amlani, J. Lewenstein, and R. K. Tsuib, Appl. Phys. Lett., 80, 3826 (2002).
[27] P. Avouris, T. Hertel, and R. Martel, Appl. Phys. Lett., 71, 285 (1997).
[28] J. A. Dagata, T. Inoue, J. Itoh, and H. Yokoyama, Appl. Phys. Lett., 73, 271 (1998).
[29] M. Luna, J. Colchero, A. Gil, J. Gomez-Herrero and A. M. Baro, Appl. Surf. Sci., 157, 393 (2000).
[30] S. Villette, M. P. Valigant, A. M. Cazabat, F. A. Schabert, and A. Kalachev, Physica A. 236, 123 (1997).
[31] R. Garcia, M. Calleja, and H. Rohrer, J. Appl. Phys., 86, 1898 (1999).
[32] P. A. Fontaine, E. Dubois, and D. Stievenard, J. Appl. Phys., 84, 1776 (1998).
[33] M. Tello, and R. Garcia, Appl. Phys. Lett., 79, 424 (2001).
[34] N. Cabrera, and N. F. Mott, Rep. Prog. Phys, 12, 163 (1949).
[35] D. Stievenard, P. A. Fontaine, and E. Dubois, Appl. Phys. Lett., 70, 3272 (1997).
[36] T. Teushler, K. Mahr, S. Miyazaki, M. Hndhauesn, and L. Ley, Appl. Phys. Lett., 67, 3144 (1995).
[37] E. Dubois, and J. L. Bubendorff, J. Appl. Phys., 87, 8148 (2000).
[38] G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, Phys. Rev. Lett., 49, 57 (1982).
[39] G. Binnig, C. F. Quate, and C. Gerber, Phys. Rev. Lett., 56, 930 (1986).