研究生: |
許維辰 |
---|---|
論文名稱: |
探討以溶膠凝膠法合成之部分取代LiNi1-xFexPO4、LiMn1-xCoxPO4 正極材料及其電性表現 Investigation of electrical performance of LiNi1-xFexPO4 and LiMn1-xCoxPO4 cathode material prepared through sol gel synthesis |
指導教授: | 蔡哲正 |
口試委員: |
林居南
顏光甫 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 71 |
中文關鍵詞: | 磷酸鋰鹽 、溶膠凝膠法 、鋰電池正極材料 |
外文關鍵詞: | LiNiPO4, LiMnPO4, sol-gel method |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗探討對橄欖石結構的磷酸鋰鎳、磷酸鋰錳材料進行部分之過渡金屬取代。實驗採用溶膠凝膠法,並透過調整在溶膠階段的藥品添加比例,能夠成功合成出LiNi1-xFexPO4 、LiMn1-xCoxPO4。電性測試分兩部份進行,第一部份為鐵取代之磷酸鋰鎳材料,第二部分為鈷取代之磷酸鋰錳材料。
在第一部份,歸納磷酸鋰鎳的XRD、電性測試結果以及現有之文獻資料,此材料目前的問題在於脫鋰後的NiPO4並不是一穩定存在相,導致觀察不到放電平台。
在第二部分,實驗的合成參數經過調整,能找出一組電性表現最佳的,優化的參數其首圈放電容量為98 mAh/g,20圈後的電容量能維持首圈的86.7 %。
實驗另外嘗試以Li4Zn(PO4)2材料作為導離子的添加物,在碳包覆步驟加入,散佈在碳層中,能進一步改善電性。透過此方法改善的LiMn1-xCoxPO4材料,其首圈放電容量為132.8 mAh/g。
1. Etacheri, V., et al., Challenges in the development of advanced Li-ion batteries: a review. Energy & Environmental Science, 2011. 4(9): p. 3243.
2. Thackeray, M.M., C. Wolverton, and E.D. Isaacs, Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries. Energy & Environmental Science, 2012. 5(7): p. 7854.
3. Molenda, J. and M. Molenda, Composite Cathode Material for Li-Ion Batteries Based on LiFePO4 System. Metal, Ceramic and Polymeric Composites for Various Uses. 2011.
4. Kraytsberg, A. and Y. Ein-Eli, Higher, Stronger, Better…︁ A Review of 5 Volt Cathode Materials for Advanced Lithium-Ion Batteries. Advanced Energy Materials, 2012. 2(8): p. 922-939.
5. Xu, B., et al., Recent progress in cathode materials research for advanced lithium ion batteries. Materials Science and Engineering: R: Reports, 2012. 73(5-6): p. 51-65.
6. Julien, C.M., et al., Structural and electronic properties of the LiNiPO4 orthophosphate. Ionics, 2012. 18(7): p. 625-633.
7. Zhang, Y., et al., Advances in new cathode material LiFePO4 for lithium-ion batteries. Synthetic Metals, 2012. 162(13-14): p. 1315-1326.
8. Lee, S.B., et al., Synthesis of LiFePO4 material with improved cycling performance under harsh conditions. Electrochemistry Communications, 2008. 10(9): p. 1219-1221.
9. Yang, G., et al., The doping effect on the crystal structure and electrochemical properties of LiMnxM1−xPO4 (M=Mg, V, Fe, Co, Gd). Journal of Power Sources, 2011. 196(10): p. 4747-4755.
10. Fisher, C.A.J., V.M.H. Prieto, and M.S. Islam, Lithium battery materials LiMPO4 (M = Mn, Fe, Co, and Ni): Insights into defect association, transport mechanisms, and doping behavior. Chemistry of Materials, 2008. 20(18): p. 5907-5915.
11. Rommel, S.M., et al., Challenges in the synthesis of high voltage electrode materials for lithium-ion batteries: a review on LiNiPO4. Monatshefte für Chemie - Chemical Monthly, 2014. 145(3): p. 385-404.
12. Allen, J.L., T.R. Jow, and J. Wolfenstine, Improved cycle life of Fe-substituted LiCoPO4. Journal of Power Sources, 2011. 196(20): p. 8656-8661.
13. Padhi, A.K., K.S. Nanjundaswamy, and J.B. Goodenough, Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. Journal of the Electrochemical Society, 1997. 144(4): p. 1188-1194.
14. Dimesso, L., C. Spanheimer, and W. Jaegermann, Investigation on graphitic carbon foams – LiNiyPO4 (y = 0.8–1.0) composites. Solid State Sciences, 2012. 14(9): p. 1372-1377.
15. Qing, R., et al., Synthesis of LiNixFe1−xPO4 solid solution as cathode materials for lithium ion batteries. Electrochimica Acta, 2013. 108: p. 827-832.
16. Prabu, M. and S. Selvasekarapandian, Dielectric and modulus studies of LiNiPO4. Materials Chemistry and Physics, 2012. 134(1): p. 366-370.
17. Prabu, M., et al., Structural, dielectric, and conductivity studies of yttrium-doped LiNiPO4 cathode materials. Ionics, 2011. 17(3): p. 201-207.
18. Prabu, M., et al., Influence of europium doping on conductivity of LiNiPO4. Transactions of Nonferrous Metals Society of China, 2012. 22(2): p. 342-347.
19. Gangulibabu, et al., CAM sol–gel synthesized LiMPO4 (M=Co, Ni) cathodes for rechargeable lithium batteries. Journal of Sol-Gel Science and Technology, 2008. 49(2): p. 137-144.
20. Angaiah, S., et al., Process for preparation of olivine lithium nickel phosphate composite, Council Sci&Ind Res India (Coui-C).
21. Yang, J. and J.J. Xu, Synthesis and Characterization of Carbon-Coated Lithium Transition Metal Phosphates LiMPO[sub 4] (M=Fe, Mn, Co, Ni) Prepared via a Nonaqueous Sol-Gel Route. Journal of The Electrochemical Society, 2006. 153(4): p. A716.
22. Kandhasamy, S., A. Pandey, and M. Minakshi, Polyvinylpyrrolidone assisted sol–gel route LiCo1/3Mn1/3Ni1/3PO4 composite cathode for aqueous rechargeable battery. Electrochimica Acta, 2012. 60: p. 170-176.
23. Minakshi, M., et al., LiNiPO4 Aqueous Rechargeable Battery, in Batteries and Energy Technology, M.C. Smart, et al., Editors. 2011, Electrochemical Society Inc: Pennington. p. 281-292.
24. Zhang, S., et al., Synthesis and Characterization of LiMnPO4 Nanoparticles Prepared by a Citric Acid Assisted Sol-Gel Method. International Journal of Electrochemical Science, 2013. 8(5): p. 6603-6609.
25. Wu, X., et al., Promoting long-term cycling performance of high-voltage Li2CoPO4F by the stabilization of electrode/electrolyte interface. Journal of Materials Chemistry A, 2014. 2(4): p. 1006.
26. Pivko, M., et al., Synthesis of Nanometric LiMnPO4via a Two-Step Technique. Chemistry of Materials, 2012. 24(6): p. 1041-1047.
27. Li, H. and H. Zhou, Enhancing the performances of Li-ion batteries by carbon-coating: present and future. Chem Commun (Camb), 2012. 48(9): p. 1201-17.
28. Zhang, L.-L., et al., High-performance Li3V2(PO4)3/C cathode materials prepared via a sol–gel route with double carbon sources. Journal of Alloys and Compounds, 2012. 513: p. 414-419.
29. Minakshi, M., et al., Structural characteristics of olivine Li(Mg0.5Ni0.5)PO4 via TEM analysis. Ionics, 2012. 18(6): p. 583-590.
30. Dimesso, L., C. Spanheimer, and W. Jaegermann, Effect of the Mg-substitution on the graphitic carbon foams—LiNi1−yMgyPO4 composites as possible cathodes materials for 5V applications. Materials Research Bulletin, 2013. 48(2): p. 559-565.
31. Li, B.Z., et al., Acetylene black-embedded LiMn0.8Fe0.2PO4/C composite as cathode for lithium ion battery. Journal of Power Sources, 2013. 232: p. 12-16.
32. Ye, F., et al., Solvothermal synthesis of nano LiMn0.9Fe0.1PO4: Reaction mechanism and electrochemical properties. Journal of Power Sources, 2014. 253: p. 143-149.
33. Liu, J., W. Liao, and A. Yu, Electrochemical performance and stability of LiMn0.6Fe0.4PO4/C composite. Journal of Alloys and Compounds, 2014. 587: p. 133-137.
34. Cui, Y.-T., et al., Enhanced electrochemical performance of different morphological C/LiMnPO4 nanoparticles from hollow-sphere Li3PO4 precursor via a delicate polyol-assisted hydrothermal method. Journal of Power Sources, 2014. 249: p. 42-47.
35. Zong, J. and X. Liu, Graphene nanoplates structured LiMnPO4/C composite for lithium-ion battery. Electrochimica Acta, 2014. 116: p. 9-18.
36. Goodenough, J.B. and Y. Kim, Challenges for Rechargeable Li Batteries†. Chemistry of Materials, 2010. 22(3): p. 587-603.
37. Xiang, J., et al., High voltage and safe electrolytes based on ionic liquid and sulfone for lithium-ion batteries. Journal of Power Sources, 2013. 233: p. 115-120.
38. Aravindan, V., et al., Effect of LiBOB Additive on the Electrochemical Performance of LiCoPO4. Journal of the Electrochemical Society, 2012. 159(9): p. A1435-A1439.
39. Xing, L.Y., et al., Improved cyclic performances of LiCoPO4/C cathode materials for high-cell-potential lithium-ion batteries with thiophene as an electrolyte additive. Electrochimica Acta, 2012. 59: p. 172-178.
40. Tarnopolskiy, V., et al., Beneficial influence of succinic anhydride as electrolyte additive on the self-discharge of 5 V LiNi0.4Mn1.6O4 cathodes. Journal of Power Sources, 2013. 236: p. 39-46.
41. Hu, M., et al., Effect of lithium difluoro(oxalate)borate (LiDFOB) additive on the performance of high-voltage lithium-ion batteries. Journal of Applied Electrochemistry, 2012. 42(5): p. 291-296.
42. Xu, M., et al., Tris (pentafluorophenyl) phosphine: An electrolyte additive for high voltage Li-ion batteries. Electrochemistry Communications, 2012. 18: p. 123-126.
43. Mi-ying, J., S. Xiu-qin, and C. Ru-fen, 柠檬酸盐溶胶-凝胶法合成. 材料科学与工程, 2000.Vo 1 . 1 8 No . 1
44. Tan, G., et al., Coralline Glassy Lithium Phosphate-Coated LiFePO4Cathodes with Improved Power Capability for Lithium Ion Batteries. The Journal of Physical Chemistry C, 2013. 117(12): p. 6013-6021.