簡易檢索 / 詳目顯示

研究生: 杜昱星
Tu, Yu Hsing
論文名稱: CAOL: 廣泛應用於行動裝置之情境感知線上機械學習系統
CAOL: A General-Purpose Online Machine Learning System for Context-Aware Applications on Mobile Devices
指導教授: 金仲達
King, Chung Ta
口試委員: 許建平
Sheu, Jang Ping
高榮駿
Kao, Jung Chun
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊系統與應用研究所
Institute of Information Systems and Applications
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 31
中文關鍵詞: 安卓服務框架線上機器學習移動式計算情境感知計算平台開發
外文關鍵詞: Android service, online machine learning, mobile computing, context-aware computing, platform development
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 智慧型手機已經成為我們生活中的一部分,並且為使用者們提供了各式各樣的服務功能。智慧型手機一般都具備有多樣的感測器,使之非常適合情境感知計算。現今,大部分在智慧型手機上的情境感知應用程式以各自的方式實作他們的情境感知功能並藉由offline learning去建立靜態不變的情境模型。然而,隨著情境感知應用程式的數量增長,將往往會導致低效率的系統資源使用和情境資訊的處理。事實上,基於線上機器學習系統的情境感知應用程式有許多相同的部分。在這篇論文中,我們發現可以將這些相同的部分給擷取出來成為一個獨立且統一的服務框架去協助各種不同的情境感知應用程式。我們將會討論如何在Android系統上去實作這樣一個廣泛應用的服務框架。我們也探討了我們所提出的這個服務框架與沒有使用這個服務框架的效能情況。


    Smartphones are becoming an integral part of our life that provide various services to their users. Smartphones are typically equipped with a variety of sensors, making them ideal for context-aware computing. Most context-aware applications running on smartphones today implement their own logic for context-awareness and rely on offline learning to build static context models. However, with an increase in context-aware applications on smartphones, such a practice often leads to inefficient uses of system resources and ineffective handling of dynamic contexts. In fact, context-aware applications based on online machine learning have many common components. In this thesis, we show that it is possible to identify these common components to develop a unified service framework that supports various context-aware applications in a smartphone system. We will discuss how to implement such a general-purpose service framework in an Android system. Performance of the proposed framework is compared with that without using the framework.

    Abstract i List of Figures iii List of Tables iv Chapter 1. Introduction 1 Chapter 2. Related Work 5 Chapter 3. Service Design 10 Chapter 4. Experiment 18 Chapter 5. Discussion 25 Chapter 6. Conclusion 28

    [1] N. Ravi, J. Scott, L. Han and L. Iftode, "Context-aware Battery Management for Mobile Phones," in Proceedings of Sixth Annual IEEE International Conference on Pervasive Computing and Communications (PerCom 2008), Hong Kong, 2008.
    [2] H. Lee, Y. S. Choi and Y.-J. Kim, "Learning, An Adaptive User Interface Based on Spatiotemporal Structure," IEEE Communications Magazine, 2011.
    [3] R. LiKamWa, Y. Liu, N. D. Lane and L. Zhong, "Can Your Smartphone Infer Your Mood," in PhoneSense workshop, 2011.
    [4] E. Kaasinen, "User Needs for Location-Aware Mobile Services," in Proceedings of personal and Ubiquitous Computing(PUC), May 2003.
    [5] V. Osmani, S. Balasubramaniam and D. Botvich, "Human Activity Recognition in Pervasive Health-Care: Supporting Efficient Remote Collaboration," Journal of Network and Computer Applications, November 2008.
    [6] A. Krause, A. Smailagic and D. P. Siewiorek, "Context-Aware Mobile Computing: Learning Context- Dependent Personal Preferences from A Wearable Sensor Array," in Proceedings of IEEE Transactions on Mobile Computing, February 2006.
    [7] A. I. Wang, B. Wu and S. K. Bakken., "Camf - context-aware machine learning framework for android.," in Proceedings of the International Conference on Software Engineering and Applications, November 2010.
    [8] Kenta Oku, Shinsuke Nakajima, Jun Miyazaki, and Shunsuke Uemura, “Context-Aware SVM for Context-Dependent Information Recommendation.,” in Proceedings of the 7th International Conference on Mobile Data Management (MDM '06), 2006.
    [9] T. Anagnostopoulos, C. Anagnostopoulos, S. Hadjiefthymiades, M. Kyriakakos, and A. Kalousis, "Predicting The Location of Mobile Users: A Machine Learning Approach," in Proceedings of the 2009 international conference on Pervasive services(ICPS’09), New York, NY, USA, 2009.
    [10] Processes and threads.
    https://developer.android.com/guide/components/processes-and-threads.html.
    [11] Process lifecycle.
    https://developer.android.com/guide/topics/processes/process-lifecycle.html.
    [12] S. P. Hall and E. Anderson, "Operating Systems for Mobile Computing," Journal of Computing Sciences in Colleges, 2009
    [13] M. Miraoui, C. Tadj, and C. b. Amar, "Architecturalsurvey of Context-Aware Systems in Pervasive Computing Environment," Journal of Ubiquitous Computing and Communication, 2008.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE