簡易檢索 / 詳目顯示

研究生: 王敏全
Min-Chuan Wang
論文名稱: 新穎薄膜電晶體技術之研究
Novel Technology of Thin-Film Transistor
指導教授: 陳建瑞
Jiann-Ruey Chen
張鼎張
Ting-Chang Chang
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 132
中文關鍵詞: 非晶矽薄膜電晶體銅製程光漏電微晶矽薄膜電晶體可撓式顯示器
外文關鍵詞: a-Si:H TFTs, Cu Metallization, Photo Leakage Cirrent, μ-Si:H TFTs, Flexible Display
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 大尺寸液晶顯示器面板由於電阻-電容延遲效應的影響造成了大尺寸化的困難,因此引入電阻值之銅金屬來降低電阻-電容延遲效應的影響。我們以銅/銅鎂合金雙層金屬結構成功製作出閘極及源/汲極金屬之非晶矽薄膜電晶體,成功的解決了金屬銅與玻璃基板及摻雜半導體層之間的附著性問題。以傳統印刷電路板產業常用之銅金屬蝕刻液成功的開發銅/銅鎂合金雙層金屬結構之濕式蝕刻製程。同時,在源/汲極金屬的應用上,也成功的解決了在遮光結構之非晶矽薄膜電晶體所發生的蕭特基漏電問題。
    而在顯示器面板的製作上主要有兩個主要的要求,分別為增加載子的移動率以及減少薄膜電晶體元件在背光下的光漏電等兩項要求。因此,除了電阻-電容延遲效應的影響要考慮外,降低薄膜電晶體元件在背光狀態的光漏電對於訊號的儲存來講也是很重要的要求。為了有效降低非晶矽薄膜電晶體元件光漏電所造成的訊號損失,我們以適量的氟摻雜之非晶矽薄膜電晶體元件在由缺陷主導的光漏電區段表現出較一般非晶矽薄膜電晶體元件之光漏電低的特性,主要是由於氟摻雜之非晶矽半導體層具有較多的複合中心所致。然而,在電洞主導的光漏電區段氟摻雜之非晶矽薄膜電晶體元件具有較高的光漏電,主要的原因為氟摻雜之非晶矽薄膜電晶體元件具有較高的活化能所導致的結果。除此之外,我們以銦錫氧化物為源/汲極金屬之非晶矽薄膜電晶體元件也具有與一般非晶矽薄膜電晶體元件不同的光漏電特性。主要的原因為由光所產生之電洞被非晶矽與銦錫氧化物所產生之蕭特基能障所阻擋,因而造成了與一般非晶矽薄膜電晶體不同的光漏電特性,亦可作為光漏電抑制的方向之ㄧ。
    除了有效的降低光漏電之外,由於非晶矽具有大量的缺陷狀態,因此限制了載子的傳輸能力。由於微晶矽具有較高的載子移動率,也成為取代非晶矽的選擇之ㄧ。另一方面,歐姆接觸的特性對於微晶矽薄膜電晶體元件而言亦非常重要。我們以銅鎂合金為源/汲極金屬之微晶矽薄膜電晶體中具有取代摻雜層的效應。利用銅鎂合金達到取代摻雜層的微晶矽薄膜電晶體元件在元件的電性上與具有摻雜層之微晶矽薄膜電晶體元件具有相似的特性。
    最後,對於可撓式顯示器的應用上,顯示器面板被要求要能承受某種程度的撓曲。因此在不同撓曲情況下,我們研究平行電流方向之撓曲對於不同通道長度之非晶矽薄膜電晶體電性所產生的效應。分別萃取源/汲極的寄生電阻以及通道電阻加以分析來解釋元件在撓曲情況下的特性變化。研究結果顯示在壓應力的情況下,源/汲極的寄生電阻具有16%的劣化。然而,通道電阻在不同的撓曲情況下則只有6%的變化量,主要變化的原因為非晶矽中缺陷狀態的變化所導致。另一方面,我們也研究在不同撓曲情況下,非晶矽薄膜電晶體的交流電壓操作可靠度問題。實驗結果發現較大的起始電壓偏移發生在壓應力的情況下;然而,在元件回復為平面狀態時,較大的起始電壓偏移則發生在張應力施加交流電壓的情況。缺陷的遮蔽效應在張應力的交流電壓測試之後明顯的失去遮蔽缺陷的效應,因此也造成在元件回復為平面狀態時,張應力施加交流電壓的元件具有較大的起始電壓偏移情況。


    Due to the RC propagation line delay for the fabrication of large-area and high-resolution active- matrix liquid-crystal displays (AM-LCD’s), the low resistivity metal Cu was introduced to reduce the RC propagation line delay .The feasibility of using Cu/CuMg as the gate electrode and source/drain metal for a-Si:H thin film transistors (TFTs) has been investigated. The issue of adhesion with the glass substrates and the n+-a-Si layer has been overcome by introducing the Cu/CuMg alloy. Furthermore, a wet etching process of Cu-based metal has been proposed by using the copper etchant in the conventional printed circuit boards (PCBs). The suppression of Schottky leakage current in metal/a-Si:H structure was also observed in the island-in a-Si:H TFT.
    The main objectives for flat panel display application are to enhance the field effect mobility and to reduce the off-state leakage current under back light illumination. In addition to reduce the RC propagation line delay for the fabrication of large-area and high-resolution active- matrix liquid-crystal displays (AM-LCD’s), the reduction of the TFT off-state leakage current under back light illumination is also an important issue for keeping signal. For effectively reducing the off-state signal loss resulted from the a-Si:H TFTs photo leakage current, the photo leakage current (IPLC) characteristic of F incorporated a-Si:H thin film transistor is smaller than that of conventional a-Si:H TFTs in the density of states (DOS) limited region, stemmed from the higher recombination centers present in a-Si:H(:F) material. However, the higher IPLC is observed in the hole conduction region, resulted from the larger Ea in the a-Si:H(:F) TFTs. The a-Si:H TFTs with the use of ITO as source-drain metal have been also fabricated. A remarkable transformation in photo leakage current has been observed under the backlight illumination. The photo generation holes blocked in the Schottky barrier could be effectively resulted in the different characteristic of photo leakage current.
    The numerous trap states existed in a-Si layer seriously strict the transporting of carriers The application of microcrystalline silicon thin film transistors (μ-Si:H TFTs) is attractive due to the higher mobility. On the other hand, the ohmic-contact characteristic of the μ-Si:H was also important for the application of μ-Si:H TFTs. The feasibility of using CuMg as source/drain metal electrodes for n+-doped-layer free µ-Si:H TFTs has been investigated. The ohmic-contact characteristic has been achieved by using the CuMg alloy as source/drain metal. The proposed µ-Si:H TFT has shown the similar electrical characteristic with the µ-Si:H TFT with n+-doped layer.
    For flexible display application, display panels are required to sustain a certain degree of bending. The effect of mechanical strain on the performance of a-Si:H TFTs with different channel lengths was studied under uniaxial compressive and tensile strain applied parallel to the TFT source-drain current path. The source/drain parasitic resistance, and channel sheet conductance were extracted to explain the device performance under mechanical strain. These results indicate that the compressive bending leads to a significant decrease (~16%) in the source-drain parasitic resistance. The channel sheet conductance has shown a 6% variation under mechanical bending. The variation under mechanical bending strain is originated from the evolution of defect state density in a-Si:H channel material. Furthermore, the instability of a-Si:H TFTs under uniaxial strain has been studied. Compared to the effect of tensile bias stress, larger threshold voltage (Vth) shift is observed under compressive bias stress. However, the Vth shift of devices on the re-flattened substrate is larger after tensile strain than that of compressive strain. The defeat diminished effect of tensile situation is decreased after re-flattening the device. Therefore, after re-flattening substrate the Vth shift resulted from tensile bias stress is larger than that of compressive one.

    Contents  ----------------------------------------------------------------------- I Acknowledgement  -----------------------------------------------------------IV Abstract  ----------------------------------------------------------------------- VI   Chapter 1 Introduction 1.1 General Background  --------------------------------------------------- 1 1.1.1 Fully Cu Metallization a-Si:H TFTs----------------------------------- 3 1.1.2 The Photo Leakage Current Suppression of a-Si:H TFTs---------- 4 1.1.3 The Development of μ-Si:H TFTs------------------------------------- 4 1.1.4 a-Si:H TFTs for Flexible Display Application ---------------------- 5 1.2 Thesis Outline ---------------------------------------------------------------- 6 Chapter 2 Cu/CuMg Gate Electrode for the Application of Hydrogenated Amorphous Silicon Thin-Film Transistor 2.1 Introduction  ------------------------------------------------------------- 10 2.2 Experimental Procedures  --------------------------------------------- 12 2.3 Results and Discussion  ---------------------------------------------- 14 2.4 Conclusion ---------------------------------------------------------------------- 16 Chapter 3 The Suppression of Schottky Leakage Current in Island- in Amorphous Silicon Thin Film Transistors with the Cu/ CuMg as Source/Drain Metal 3.1 Introduction  ------------------------------------------------------------ 17 3.2 Experimental Procedures --------------------------------------------------- 19 3.3 Results and Discussion ------------------------------------------------------ 20 3.4 Conclusion --------------------------------------------------------------------- 22 Chapter 4 Photo Leakage Currents Characteristic of F Incorporated Hydrogenated Amorphous Silicon Thin -Film Transistor 4.1 Introduction  -------------------------------------------------------------------- 24 4.2 Experimental Procedures  --------------------------------------------------- 26 4.3 Results and Discussion  ------------------------------------------------------- 27 4.4 Conclusion ----------------------------------------------------------------------- 31 Chapter 5 Schottky Barrier Height for the Photo Leakage Current Transformation of a-Si:H TFTs 5.1 Introduction  -------------------------------------------------------------------- 32 5.2 Experimental Procedures ------------------------------------------------------ 34 5.3 Results and Discussion  ------------------------------------------------------- 36 5.4 Conclusion ------------------------------------------------------------------------- 38 Chapter 6 n+-Doped-Layer Free μ-Si:H TFTs Fabricated with the CuMg as Source/Drain Metal 6.1 Introduction  -------------------------------------------------------------------- 39 6.2 Experimental Procedures  ---------------------------------------------------- 41 6.3 Results and Discussion  ------------------------------------------------------- 42 6.4 Conclusion ------------------------------------------------------------------------- 45 Chapter 7 Analysis on Parasitic Resistance and Channel Sheet Conductance of a-Si:H TFT under Mechanical Bending 7.1 Introduction ---------------------------------------------------------------------- 46 7.2 Experimental procedures ---------------------------------------------------- 47 7.3 Results and discussion ---------------------------------------------------------- 49 7.4 Conclusion------------------------------------------------------------------------- 53 Chapter 8 The Instability of a-Si:H TFT under Mechanical Strain with High Frequency AC Bias Stress 8.1 Introduction ---------------------------------------------------- 55 8.2 Experimental procedures --------------------------------------------------- 57 8.3 Results and discussion --------------------------------------------------------- 59 8.4 Conclusion------------------------------------------------------------------------ 65 Chapter 9 Conclusions and Suggestions for Future Work 9.1 Conclusions----------------------------------------------------------------------- 66 9.1.1 Cu/CuMg Gate Electrode for the Application of Hydrogenated Amorphous Silicon Thin-Film Transistor-----------------------------66 9.1.2 The Suppression of Schottky Leakage Current in Island-in Amorphous Silicon Thin Film Transistors with the Cu/CuMg as Source/Drain Metal------------------------------------------------------ 67 9.1.3 Photo Leakage Currents Characteristic of F Incorporated Hydrogenated Amorphous Silicon Thin-Film Transistor ---------------------------------------------------------------------------- 68 9.1.4 Schottky Barrier Height for the Photo Leakage Current Transformation of a-Si:H TFTs -------------------------------------- 69 9.1.5 n+-Doped-Layer Free μ-Si:H TFTs Fabricated with the CuMg as Source/Drain Metal ------------------------------------------------- 69 9.1.6 Analysis on Parasitic Resistance and Channel Sheet Conductance of a-Si:H TFT under Mechanical Bending-------------------------- 70 9.1.7 The Instability of a-Si:H TFT under Mechanical Strain with High Frequency AC Bias Stress -------------------------------------------- 71 9.2 Suggestions for Future Work------------------------------------------- 72 References ----------------------------------- -------------------------------------------- 73 Figure Captions  ----------------------------------------------------------------------- 93 Table  --------------------------------------------------------------------------------------- 97 Figures  ----------------------------------------------------------------------------------- 101 Publication List ------------------------------------------------------------------------- 129 Vita--------------------------------------------------------------------------------------------132

    Reference
    Chapter 1

    [1.1] F. B. Ellis, Jr., R. G. Gordon, W. Paul, and B. G. Yacobi, “Properties of
    hydrogenated amorphous silicon prepared by chemical vapor deposition,” J.
    Appl. Phys.55, 4309, (1984).
    [1.2] W. E. Howard, “Limitations and prospects of a-Si :H TFT’s,” J. Soc. Infom. Display, vol. 3, pp. 127–132, (1995).
    [1.3] Q. Zhang, D. S. Shen, H. Gleskova, S. Wagner ,” Modeling of Gate Line
    Delay in Very Large Active Matrix Liquid Crystal Displays,” IEEE Trans.
    Electron Device, 45, 1, pp.343 (1998)
    [1.4] W.S. Hong, K. W. Jung, J. H. Choi, B. K. Hwang, and K. Chung , “High Transmittance TFT-LCD Panels using Low-k CVD film,“ IEEE Electron Device Lett., 25, 6,pp. 381 (2004).
    [1.5] J. K. Yoon, Y. H. Jang, B. K. Kim, H. S. Choi, B. C. Ahn, and C. Lee, “Voltage dependence of off current in a-Si:H TFT under backlight illumination,” J.Non-Cryst. Solids 164-166, 747, (1993).
    [1.6] M. Sekiya, M. Hara, N. Sano, A. Kohno, and T. Sameshima, “High performance poly-crystalline silicon thin film transistors fabricated using remote plasma chemical vapor deposition of SiO2,” IEEE Electron Device Lett. 15, 69, (1994).
    [1.7] J. Jang, J. Y. Oh, S. K. Kim, Y. J. Choi, S. Y. Yoon, and C. O. Kim, “Electric-field-enhanced crystallization of amorphous silicon,” Nature 395, 481, (1998).
    [1-8] R. Baeuerle, J. Baumbach, E. Lueder, and J. Siegordner, “A MIM-driven
    transmissive display with color filters on 2 in diagonal plastic substrates,” in
    SID’99 Digest,Society of Information Display, p. 14, (1999)
    [1-9] S. D. Theiss and S. Wagner, “Amorphous silicon thin-film transistors on steel foil substrates,” IEEE Electron Device Lett. 17, 264 (1996)
    [1.10] S. Venkatesan, A. V. Gelatos, V. Misra, B. Smithe, R. Islam, J. Cope, B.Wilson, D. Tuttle, R. Cardwell, S. Anderson, M. Angyal, R. Bajaj, C. Capasso, P. Crabtree, S. Das, J. Farkas, S. Filipiak, B. Fiordalice, M. Freeman, P. V. Gilbert, M. Herrick, A. Jain, H. Kawasaki, C. Kiing, J. Klein, T. Lii, K. Reid, T. Saaranen, C. Simpson, T. Sparks, P. Tsui, R. Venkatraman, D. Watts, E. J. Weitzman, R. Woodruff, I. Yang, N. Bhat, G. Hamilton, and Y. Yu, “A High Performance 1.8V, 0.20um CMOS Technology with Copper Metallization,” IEDM Tech. Dig., pp.769–772, (1997).
    [1.11] D. Edelstein, J. Heidenreich, R. Goldblatt, W. Cote, C. Uzoh, N. Lustig, P. Roper, T. McDvitt, W. Motsfiff, A. Simon, J. Dukovic, R. Wachnik, H. Rathore, R. Shultz,L. Su, S. Luce, and J. Slattery, “Full Copper Wiring in a Sub- 0.25um CMOS ULSI Technology,” IEDM Tech. Dig., pp. 773–776, (1997).
    [1.12] K. Ono, Y. Imajo, I. Mori, R. Oke, S. Kato, K. Endo, and H. Ishino, “New IPS Technology Suitable for LCD‐TVs,” SID‘05 DIGEST, p. 1848-1851, (2005).
    [1.13] Y. Yoshida, Y. Kikuchi, S. Daly, and M. Sugino, “Image Quality
    Improvements in Large‐Screen LC‐TV”,SID’05 DIGEST, p. 1852-1855,
    (2005).
    [1.14] M. J. Powell, C. Glasse, P. W. Green, I. D. French, and I. J. Stemp, “An amorphous silicon thin-film transistor with fully self-aligned top gate structure,” IEEE Electron Device Lett., 21( 3), 104, (2000)
    [1.15] A. Sazonov and C. McArthur, “Sub-100ºC a-Si:H TFTs on plastic substrates
    with silicon nitride gate dielectrics,” J. Vac. Sci. Technol. A, Vol. 22, No. 5, p.
    2052, (2004)
    [1.16] C. H. Lee, D. Striakhilev, A. Nathan, “Highly conductive n hydrogenated microcrystalline silicon and its application in thin film transistors,” J. Vac. Sci. Technol. A, vol. 22, p991, (2004)
    [1.17] M. Mulato, Y. Chen, S. Wagner, and A. R. Zanatta, “Microcrystalline silicon
    with high electron field-effect mobility deposited at 230° C,”J. Non-Cryst.
    Solids ,266,1260, (2000).
    [1.18] P. Roca I Cabarrocas, S. Kalache, R. Vanderhghen, and Y. Bonnassieux, “Microcrystalline Silicon: An emerging Material for Stable Thin Film Transistors,” SID 03 DIGEST, 1096, (2003).
    [1.19] H. Gleskova, S. Wagner et.al , "150° C. Amorphous silicon thin-film
    transistor technology for polyimide substrates," Journal of The Electrochemical Society, 148 (7), G370-G374 (2001)
    [1.20] C.-S. Yang, L. L. Smith, C. B. Arthur, and G. N. Parsons, “Stability of low-temperature amorphous silicon thin film transistors formed on glass. and transparent plastic substrates,” J. Vac. Sci.Technol. B 18, pp. 683 (2000)
    [1.21] M. Wu, K. Pangal, J. C. Sturm, and S. Wagner, “Amorphous silicon transistors on ultrathin steel foil substrates,” Appl. Phys. Lett. 75, 2244 (1999)

    Chapter 2

    [2.1] S. Venkatesan, A. V. Gelatos, V. Misra, B. Smithe, R. Islam, J. Cope, B.Wilson, D. Tuttle, R. Cardwell, S. Anderson, M. Angyal, R. Bajaj, C. Capasso, P. Crabtree, S. Das, J. Farkas, S. Filipiak, B. Fiordalice, M. Freeman, P. V. Gilbert, M. Herrick, A. Jain, H. Kawasaki, C. Kiing, J. Klein, T. Lii, K. Reid, T. Saaranen, C. Simpson, T. Sparks, P. Tsui, R. Venkatraman, D. Watts, E. J. Weitzman, R. Woodruff, I. Yang, N. Bhat, G. Hamilton, and Y. Yu, “A High Performance 1.8V, 0.20um CMOS Technology with Copper Metallization,” IEDM Tech. Dig., pp.769–772, (1997).
    [2.2] D. Edelstein, J. Heidenreich, R. Goldblatt, W. Cote, C. Uzoh, N. Lustig, P. Roper, T. McDvitt, W. Motsfiff, A. Simon, J. Dukovic, R. Wachnik, H. Rathore, R. Shultz,L. Su, S. Luce, and J. Slattery, “Full Copper Wiring in a Sub- 0.25um CMOS ULSI Technology,” IEDM Tech. Dig., pp. 773–776, (1997).
    [2.3] W. E. Howard, “Limitations and prospects of a-Si :H TFT’s,” J. Soc. Infom. Display, vol. 3, pp. 127–132, (1995).
    [2.4] K. Ono, Y. Imajo, I. Mori, R. Oke, S. Kato, K. Endo, and H. Ishino, “New IPS Technology Suitable for LCD‐TVs,” SID‘05 DIGEST, p. 1848-1851, (2005).
    [2.5] Y. Yoshida, Y. Kikuchi, S. Daly, and M. Sugino, “Image Quality
    Improvements in Large‐Screen LC‐TV,” SID’05 DIGEST, p. 1852-1855,
    (2005).
    [2.6] H. Sirringhaus, S. D. Theiss, A. Kahn, and S. Wagner , “Self-passivated
    copper gates for amorphous silicon thin-filmtransistors,” IEEE Electron Device Lett., vol. 18, pp. 388–390, (1997).
    [2.7] W. H. Lee, H. L. Cho, B. S. Cho, J. Y. Kim, Y. S. Kim, W. G. Jung, H. Kwon, and J.H. Lee, “Effect of Mg content in Cu(Mg)/SiO /Si multi-layers on the resistivity after annealing in an oxygen ambient,” J. Vac. Sci. Technol., vol. 18, pp. 2972–2977, (2000).
    [2.8] W. H. Lee, H. L. Cho, B. S. Cho, J. Y. Kim, Y. S. Kim, W. G. Jung, H.
    Kwon, J. H.Lee, P. J. Reucroft, C. M. Lee, and J. G. Lee, “Factors Affecting Passivation of Cu(Mg) Alloy Films,” J. Electrochem. Soc., vol. 147, pp.
    3066–3069, (2000).
    [2.9] P. M. Fryer, E. C. Colgan, E. Galligan,W. Graham, R. Horton, D. Hunt, K. Latzko, R. Nywening, L. Jenkins, R. John, P. Koke, Y. Kuo, F. Libsch, A. Lien, I. Lovas, R. Polastre, M. E. Rothwell, J. Souk, J.Wilson, R.Wisnieff, and S. Wright, “A six-mask TFT-LCD process using copper-gate metallurgy,” Dig. Soc. Inform. Display, pp. 333–336, (1996).
    [2.10] S. W. Lee, K. S. Cho, B. K. Choo, and J. Jang , “Copper gate hydrogenated amorphous silicon TFT with thin buffer layers,” IEEE Electron Device Lett., vol. 23,pp. 324–326, Jun, (2002)
    [2.11] W. H. Lee, B. S. Cho, B. J. Kang, H. J. Yang, J. G. Lee, I. K. Woo, S. W. Lee,
    J. Jang, G. S. Chae, and H. S. Soh, “A self-passivated Cu(Mg) gate electrode
    for an amorphous silicon thin-film transistor,” Appl. Phys. Lett. 79, p.3962,
    (2001)
    [2.12] M. Dohjo, T. Aoki, K. Suzuki, M. Ikeda, T. Higuchi, and Y. Oana, “Low-Resistance Mo-Ta Gate-Line Material for Large-Area a-Si TFT-LCD,” Pro, SID 29,283, (1988).
    [2.13] N. Hirano, N. Ikeda, H. Yamaguchi, S. Nishida, Y. Hirai, and S. Kaneko, “A
    33-cm diagonal high-resolution multicolor TFT-LCD with fully self-aligned
    a-Si :H TFT’s,” Conference Record IDRC, p. 369, (1994)
    [2.14] H. Morimoto,” Current Progress in Manufacturing Process Technologies
    and Equipment for AMLCDs,” Proceedings of the 12th International
    Research Display Conference, p. 337, (1992).
    [2.15] P. S. Shin, T. C. Chang, S. M. Chen, M. S. Feng, D. Z. Peng, and C. Y.Chang, “Application of high temperature deposited aluminum gate electrode to the fabrication of a-Si:H TFT,” Surf. Coat. Technol. 108, 588, (1998).

    Chapter 3

    [3.1] F. B. Ellis, Jr., R. G. Gordon, W. Paul, and B. G. Yacobi, “Properties of hydrogenated amorphous silicon prepared by chemical vapor deposition, ”J. Appl. Phys.55, 4309,(1984).
    [3.2] R. Baeuerle, J. Baumbach, E. Lueder, and J. Siegordner, “A MIM-driven
    transmissive display with color filters on 2 in diagonal plastic substrates,” in
    SID’99 Digest,Society of Information Display, p. 14, (1999)
    [3.3] J. K. Yoon, Y. H. Jang, B. K. Kim, H. S. Choi, B. C. Ahn, and C. Lee, “Voltage dependence of off current in a-Si: H TFT under backlight illumination,” J.Non-Cryst. Solids, 164-166, 747, (1993).
    [3.4] M. Akiyama, T. Kiyota, Y. Ikeda, T. Koizumi, M. Ikeda, and K. Suzuki, “A 13.8-in.-diagonal 1-Mpixel TFT-LCD with Light-Shielded Fully Self-Aligned TFTs,” SID ’95 Digest, Society for Information Display, Florida , p.158(1995).
    [3.5] K. Ono, Y. Imajo, I. Mori, R. Oke, S. Kato, K. Endo, and H. Ishino,“New IPS Technology Suitable for LCD-TVs,”SID‘05 DIGEST, p.1848-1851,(2005).
    [3.6] Y. Yoshida, Y. Kikuchi, S. Daly, and M. Sugino, “Image Quality Improvements in Large-Screen LC-TV,” SID’05 DIGEST, p. 1852-1855, (2005).
    [3.7] N. Hirano, N. Ikeda, H. Yamaguchi, S. Nishida, Y. Hirai, and S. Kaneko, “A 33cm-Diagonal High-Resolution Multi-Color TFT-LCD with Fully Self-Aligned a-Si:H TFTs,” IDRC ’ 94 Digest, International Display Research Conference, CA, p. 369, (1994).
    [3.8] W. E. Spear, “The Study of Transport and Related Properties of Amorphous Silicon by Transient Experiments,” J. Non-Cryst. Solids 59/60, 1, (1983).
    [3.9] M. Akiyama, H. Toeda, H. Ohtaguro, K. Suzuki, and H. Ito, “An a-Si TFT with a new light-shield structure and its application to active-matrix liquid crystal displays,” IEDM’88 , 268, (1988).
    [3.10] C. W. Chen, T. C. Chang, P. T. Liu, H. Y. Lu, K. C. Wang, C. S. Huang, C.C.
    Ling, T. Y. Tseng, “High-performance hydrogenated amorphous-Si TFT for AMLCD and AMOLED applications,” IEEE Electron Device Lett., 26, 731, (2005).
    [3.11] Y. E. Chen, J. H. Chen, Y. H. Tai, “A light-shield a-Si TFT with low dark-leakage currents, ” ASID 99, 89, (1999).
    [3.12] M. Dohjo, T. Aoki, K. Suzuki, M. Ikeda, T. Higuchi, and Y. Oana,“Low-Resistance Mo-Ta Gate-Line Material for Large-Area a-Si TFT-LCDs,” Pro, SID 29,283 , (1988).
    [3.13] H. Morimoto,” Current Progress in Manufacturing Process Technologies
    and Equipment for AMLCDs,” Proceedings of the 12th International
    Research Display Conference, p. 337, (1992).
    [3.14] P. S. Shin, T. C. Chang, S. M. Chen, M. S. Feng, D. Z. Peng, and C. Y.Chang,“Application of high temperature deposited aluminum gate electrode to the fabrication of a-SI:H TFT,”Surf. Coat. Technol., 108, 588-593,(1998).
    [3.15] C. Y. Liang, F. Y. Gan, T. C. Chang, P. T. Liu, and F. S. Yeh, “The Mechanisms of On/Off Currents for the Dual-Gate a-Si:H Thin-Film Transistors with Various Lengths of Indium-Tin-Oxide Top Gate,” Conference Record IDW 06, p.1663, (2006).
    [3.16] H. Matsuura, T. Okuno, H. Okushi, S. Yamasaki, A. Matsuda, N. Hata, H.
    Oheda, and K. Tanaka, “Ohmic Contact Properties of Magnesium Evaporated onto Undoped and P-doped a-Si: H,” Jpn. J. Appl. Phys., 22, pp. L197, (1983).

    Chapter 4

    [4.1] F. B. Ellis, Jr., R. G. Gordon, W. Paul, and B. G. Yacobi, “ Properties of hydrogenated amorphous silicon prepared by chemical vapor deposition,” J. Appl. Phys.55, 4309,(1984).
    [4.2] R. Baeuerle, J. Baumbach, E. Lueder, and J. Siegordner, “A MIM-Driven Transmissive Display with Color Filters on 2-in. -Diagonal Plastic Substtates,“ in SID’99 Digest, Society of Information Display, p. 14, (1999)
    [4.3] J. K. Yoon, Y. H. Jang, B. K. Kim, H. S. Choi, B. C. Ahn, and C. Lee,” Voltage dependence of off current in a-Si:H TFT under backlight illumination,” J.Non-Cryst. Solids 164-166, 747, (1993).
    [4.4] M. Akiyama, T. Kiyota, Y. Ikeda, T. Koizumi, M. Ikeda, and K. Suzuki, “A 13.8-in.-diagonal 1-Mpixel TFT-LCD with Light-Shielded Fully Self-Aligned TFTs, “ SID ’95 Digest, Society for Information Display, Florida , p. 158, (1995)
    [4.5] N. Hirano, N. Ikeda, H. Yamaguchi, S. Nishida, Y. Hirai, and S. Kaneko, “A 33cm-Diagonal High-Resolution Multi-Color TFT-LCD with Fully Self- Aligned a-Si: H TFTs,” IDRC ’94 Digest, International Display Research Conference, CA, p. 369,(1994).
    [4.6] W. E. Spear,” An investigation of some fundamental properties of a-Si from measurements of interface and surface effects,“ J. Non-Cryst. Solids 59/60, 1, (1983).
    [4.7] J. N. Bullock and S. Wagner,” Amorphous Silicon Films from Dichlorosilane and Hydrogen,” Mater. Res. Soc. Symp. Proc. 336, 97, (1994).
    [4.8] T. Oshima, K. Tamaguchi, A. Yamada, M. Koganai, and K. Takahashi,” Improvement of film quality of a-Si :H deposited by photo-CVD using SiH2Cl2,“ Mater.Res. Soc. Symp. Proc. 336, 91, (1994).
    [4.9] M. Nakata and S. Wagner,” Fast growth of hydrogenated amorphous silicon from dichlorosilane,“ Appl. Phys. Lett. 65, 1940, (1994).
    [4.10] J. S. Byun, H. B. Jeon, K. H. Lee, and J. Jang,” Effect of Cl incorporation on the stability of hydrogenated amorphous silicon” Appl. Phys. Lett. 67, p. 3786,(1995).
    [4.11] K. S. Lee, J. H. Choi, S. K. Kim, H. B. Jeon, and J. Jang ,” Low off-state leakage current thin-film transistor using Cl incorporated hydrogenated amorphous silicon,” Appl. Phys. Lett. 69(16), p.2403, (1996)
    [4.12] J. H. Choi, C. S. Kim, S. K. Kim, and J. Jang,” Effect of Cl incorporation on the performance of amorphous silicon thin film transistors” J. Appl. Phys. 82 (8), p.4081, (1997).
    [4.13] C. H. Hyun, M. S. Shur, and A. Madan,” Determination of the density of localized states in fluorinated a-Si using deep level transient spectroscopy,” Appl. Phys. Lett. 41, p.178, (1982)
    [4.14] R. E. I. Schropp, J. Snijder, and J. F. Verwey, “A self-consistent analysis of temperature-dependent field-effect measurements in hydrogenated amorphous silicon thin-film transistors,” J. Appl. Phys. 60 , p.643, (1986).10
    [4.15] R. Schumacher, P. Thomas, K. Weber, W. Fuhs, F. Djamdji, P. G. Le Comber, and R. E. I. Schropp,” Temperature-dependent effects in field-effect measurements on hydrogenated amorphous silicon thin-film transistor,” Phil. Mag. B, vol.58, p.389, (1988).
    [4.16] T. Globus, H. C. Slade, M. S. Shur, and M. Hack,” Density of deep bandgap states in amorphous silicon from the temperature dependence of thin-film transistor current,” Mat. Res. Soc. Proc.,vol 336,p823, (1994).

    Chapter 5

    [5.1] F. B. Ellis, Jr., R. G. Gordon, W. Paul, and B. G. Yacobi,” Properties of hydrogenated amorphous silicon prepared by chemical vapor deposition,” J. Appl. Phys.55, 4309 (1984).
    [5.2] R. Baeuerle, J. Baumbach, E. Lueder, and J. Siegordner,“ A MIM driven Display with Colour Filters on 2” diagonal Plastic Substrates,” in SID’99 Digest, Society of Information Display, p. 14 (1999)
    [5.3] W. E. Howard, “Limitations and prospects of a-Si :H TFT’s,” J. Soc. Infom. Display, vol. 3, pp. 127–132 (1995).
    [5.4] S. Venkatesan, A. V. Gelatos, V. Misra, B. Smithe, R. Islam, J. Cope, B.Wilson, D. Tuttle, R. Cardwell, S. Anderson, M. Angyal, R. Bajaj, C. Capasso, P. Crabtree, S. Das, J. Farkas, S. Filipiak, B. Fiordalice, M. Freeman, P. V. Gilbert, M. Herrick, A. Jain, H. Kawasaki, C. Kiing, J. Klein, T. Lii, K. Reid, T. Saaranen, C. Simpson, T. Sparks, P. Tsui, R. Venkatraman, D. Watts, E. J. Weitzman, R. Woodruff, I. Yang, N. Bhat, G. Hamilton, and Y. Yu, “A High Performance 1.8V, 0.20um CMOS Technology with Copper Metallization,” IEDM Tech. Dig., pp.769–772, (1997).
    [5.5] D. Edelstein*, J. Heidenreich, R. Goldblatt, W. Cote, C. Uzoh, N. Lustig, P. Roper, T. McDevittt, W. Motsifft, A. Simon, J. Dukovic, R. Wachnik, H. Rathore, R. Schulz , L. Su, S. Lucet, and J. Slatteryt, “Full Copper Wiring in a Sub-0.25 pm CMOS ULSI Technology,“ IEDM Tech. Dig., pp. 773 (1997).
    [5.6] K. Ono, Y. Imajo, I. Mori, R. Oke, S. Kato, K. Endo, and H. Ishino,” New IPS Technology Suitable for LCD-TVs,“ SID’05 DIGEST, p. 1848-1851 (2005).
    [5.7] Y. Yoshida, Y. Kikuchi, S. Daly, and M. Sugino,” 66.3: Invited Paper: Image Quality Improvements in Large-Screen LC-TV,” SID’05 DIGEST, p. 1852 (2005).
    [5.8] J. K. Yoon, Y. H. Jang, B. K. Kim, H. S. Choi, B. C. Ahn, and C. Lee,” Voltage dependence of off current in a-Si:H TFT under backlight illumination,” J. Non-Cryst. Solids 164-166, 747 (1993).
    [5.9] M. Akiyama, T. Kiyota, Y. Ikeda, T. Koizumi, M. Ikeda, and K. Suzuki,” A 13.8-in.-diagonal 1-Mpixel TFT-LCD with Light-Shielded Fully Self-Aligned TFTs,” SID ’95 Digest, Society for Information Display, Florida , p. 158 (1995)
    [5.10] N. Hirano, N. Ikeda, H. Yamaguchi, S. Nishida, Y. Hirai, and S. Kaneko,” A 33cm-Diagonal High-Resolution Multi-Color TFT-LCD with Fully Self-Aligned a-Si: H TFTs,” IDRC ’94 Digest, International Display Research Conference, CA, p. 369 (1994)
    [5.11] W. E. Spear, ”An investigation of some fundamental properties of a-Si from measurements of interface and surface effects,“ J. Non-Cryst. Solids 59/60, 1 (1983).
    [5.12] J. N. Bullock and S. Wagner, ” Amorphous Silicon Films from Dichlorosilane and Hydrogen,” Mater. Res. Soc. Symp. Proc. 336, 97(1994).
    [5.13] T. Oshima, K. Tamaguchi, A. Yamada, M. Koganai, and K. Takahashi, ” Improvement of film quality of a-Si :H deposited by photo-CVD using SiH2Cl2,”Mater.Res. Soc. Symp. Proc. 336, 91 (1994).
    [5.14] M. Nakata and S. Wagner, ” Fast growth of hydrogenated amorphous silicon from dichlorosilane,“ Appl. Phys. Lett. 65, 1940 (1991).
    [5.15] J. S. Byun, H. B. Jeon, K. H. Lee, and J. Jang, ” Effect of Cl incorporation on the stability of hydrogenated amorphous silicon,” Appl. Phys. Lett. 67, p. 3786, (1995).
    [5.16] K. S. Lee, J. H. Choi, S. K. Kim, H. B. Jeon, and J. Jang, ” Low off-state leakage current thin-film transistor using Cl incorporated hydrogenated amorphous silicon,” Appl. Phys. Lett. 69 (16), p.2403, (1996).
    [5.17] J. H. Choi, C. S. Kim, S. K. Kim, and J. Jang, ”Effect of Cl incorporation on the performance of amorphous silicon thin film transistors,” J. Appl. Phys. 82 (8), p.4081, (1997).
    [5.18] R. L. Anderson,” Photocurrent suppression in heterojunction solar cells,” Appl. Phys. Lett., vol. 27, p. 691 (1975).
    [5.19] M. C. Wang, T. C. Chang, P. T. Liu, S. W. Tsao, and J. R. Chen,” Photo-leakage-current characteristic of F incorporated hydrogenated amorphous silicon thin film transistor,” Appl. Phys. Lett. 90, 192114, (2007).
    [5.20] M. Akiyama, H. Toeda, H. Ohtaguro, K. Suzuki, and H. Ito,” An a-Si TFT with a new light-shield structure and its application to active-matrix liquid crystal displays,” IEDM Tech. Dig.,pp.268 (1988).

    Chapter 6

    [6.1] F. B. Ellis, Jr., R. G. Gordon, W. Paul, and B. G. Yacobi, “Properties of hydrogenated amorphous silicon prepared by chemical vapor deposition,” J. Appl. Phys.55, 4309(1984)
    [6.2] R. Baeuerle, J. Baumbach, E. Lueder, and J. Siegordner, “A MIM-driven
    transmissive display with color filters on 2 in diagonal plastic substrates,” in
    SID’99 Digest,Society of Information Display, p. 14, (1999)
    [6.3] W. E. Howard,“ Limitations and prospects of. a -Si:H TFT’s ,”J. Soc. Infom. Display, vol. 3, pp127-132, (1995).
    [6.4] Venkatesan, S. Gelatos, A.V. Hisra, S. Smith, B. Islam, R. Cope, J. Wilson, B. Tuttle, D. Cardwell, R. Anderson, S. Angyal, M. Bajaj, R. Capasso, C. Crabtree, P. Das, S. Farkas, J. Filipiak, S. Fiordalice, B. Freeman, M. Gilbert, P.V. Herrick, M. Jain, A. Kawasaki, H. King, C. Klein, J. Lii, T. Reid, K. Saaranen, T. Simpson, C. Sparks, T. Tsui, P. Venkatraman, R. Watts, D. Weitzman, E.J. Woodruff, R. Yang, I. Bhat, N. Hamilton, G. Yu, Y. , “A high performance 1.8 V, 0.20 μm CMOS technology with copper metallization,” IEDM Tech. Dig, p.769, (1997).
    [6.5] D. Edelstein, J. Heidenreich, R. Goldblatt, W. Cote, C. Uzoh, N. Lustig, P. Roper, T. McDevitt, W. Motsiff, A. Simon, J. Dukovic, R. Wachnik, H. Rathore, R. Schulz,L. Su, S. Luce and J. Slattery, “Full copper wiring in a sub-0.25 μm CMOS ULSI technology,” IEDM Tech. Dig, p.773, (1997)
    [6.6] K. Ono, Y. Imajo, I. Mori, R. Oke, S. Kato, K. Endo, and H. Ishino, “New IPS Technology Suitable for LCD-TVs,” SID‘05 DIGEST, p.1848, (2005)
    [6.7] Y. Yoshida, Y. Kikuchi, S. Daly, and M. Sugino, “Image Quality Improvements in Large-Screen LC-TV,” SID’05 DIGEST, p.1852, (2005)
    [6.8] J. K. Yoon, Y. H. Jang, B. K. Kim, H. S. Choi, B. C. Ahn, and C. Lee, ”Voltage dependence of off current in a-Si:H TFT under backlight illumination,”J. Non-Cryst. Solids 164-166, 747, (1993)
    [6.9] M. Akiyama, T. Kiyota, Y. Ikeda, T. Koizumi, M. Ikeda, and K. Suzuki,“ A 13.8-in.-diagonal 1-Mpixel TFT-LCD with Light-Shielded Fully Self- Aligned TFTs,” SID ’95 Digest, Society for Information Display, Florida , p.158, (1995).
    [6.10] N. Hirano, N. Ikeda, H. Yamaguchi, S. Nishida, Y. Hirai, and S. Kaneko,
    “A 33cm-Diagonal High-Resolution Multi-Color TFT-LCD with Fully Self-Aligned a-Si:H TFTs,” IDRC ’94 Digest, International Display Research Conference, CA, p.369, (1994)
    [6.11] W. E. Spear, “The Study of Transport and Related Properties of Amorphous Silicon by Transient Experiments,” J. Non-Cryst. Solids 59/60, 1, (1983) .
    [6.12] J. N. Bullock and S. Wagner, “Amorphous Silicon Films from Dichlorosilane and Hydrogen,” Mater. Res. Soc. Symp. Proc. 336, p.97, (1994).
    [6.13] T. Oshima, K. Tamaguchi, A. Yamada, M. Koganai, and K. Takahashi, “Improvement of film quality of a-Si:H deposited by photo-CVD using SiH2 Cl 2,”Mater. Res. Soc. Symp. Proc. 336, p.91, (1994).
    [6.14] M. Nakata and S. Wagner, “Fast growth of hydrogenated amorphous silicon from dichlorosilane,” Appl. Phys. Lett. 65, p.1940, (1994)
    [6.15] J. S. Byun, H. B. Jeon, K. H. Lee, and J. Jang,“Effect of Cl incorporation on the stability of hydrogenated amorphous silicon,” Appl. Phys. Lett. 67, pp.3786, (1995)
    [6.16] K. S. Lee, J. H. Choi, S. K. Kim, H. B. Jeon, and J. Jang , “Low off-state leakage current thin-film transistor using Cl incorporated hydrogenated amorphous silicon,” Appl. Phys. Lett. 69 (16), pp. 2403-2405, (1996)
    [6.17] J. H. Choi, C. S. Kim, S. K. Kim, and J. Jang, “Effect of Cl incorporation on the performance of amorphous silicon thin film transistors,” J. Appl. Phys. 82 (8), 4081, (1997)
    [6.18] R. L. Anderson,“Photocurrent suppression in heterojunction solar cells, ” Appl. Phys. Lett., vol. 27, 691, (1975).

    Chapter 7

    [7.1] R. Baeuerle, J. Baumbach, E. Lueder, and J. Siegordner, “A MIM-driven transmissive display with color filters on 2 in diagonal plastic substrates,” in SID’99 Digest, Society of Information Display, p. 14, (1999).
    [7.2] H. Gleskova, R. Konenkamp, S. Wagner, Q. Zhang, and D. S. Shen, “Electro- photographically patterned thin-film silicon transistors,” IEEE Electron Device Lett., vol. 17, pp. 264–266, (1996).
    [7.3] H. Gleskova, S. Wagner, V. Ga parík, and P. Ková, "150° C. Amorphous silicon thin-film transistor technology for polyimide substrates," Journal of The Electrochemical Society, vol. 148 (7), G370-G374, (2001)
    [7.4] A. Sazonov and C. McArthur, “Sub-100ºC a-Si:H TFTs on plastic substrates with silicon nitride gate dielectrics,” J. Vac. Sci. Technol. A, vol. 22(5), pp. 2052-2055, (2004).
    [7.5] A. Nathan, P. Servati, K.S. Karim, D. Striakhilev, A. Sazonov, “Thin film transistor integration on glass and plastic substrates in amorphous silicon technology,” IEE Proc.-Circuits Devices Systems 150, 329-338, (2003).
    [7.6] C.-S. Yang, L. L. Smith, C. B. Arthur, and G. N. Parsons, “Stability of low-temperature amorphous silicon thin film transistors formed on glass and transparent plastic substrates,” J. Vac. Sci. Technol. B, vol. 18, pp. 683–689, (2000).
    [7.7] M. Wu, K. Pangal, J. C. Sturm, and S. Wagner, “High electron mobility polycrystalline silicon thin-film transistors on steel foil substrates,” Appl. Phys. Lett., vol. 7(5), pp. 2244–2246, (1999).
    [7.8] S. Minomura and H. G. Drickamer,” Pressure induced phase transitions in silicon, germanium and some III–V compounds,” J. Phys. Chem. Solids 23, 451, (1962).
    [7.9] W. E. Spear and M. Heintze, “The effects of applied and internal strain on the electronic properties of amorphous silicon,” Philos. Mag. B, vol. 54, pp. 343–358 (1986).
    [7.10] W. Fuhs, “Influence of pressure on the electronic conduction in tetrahedrally bonded amorphous semiconductors (thin films),” Phys. Stat. Sol. (a) 10, 201 (1972).
    [7.11] E.Menard, R.G.Nuzzo, and J.A.Rogers, “Bendable single crystal silicon thin film transistors formed by printing on plastic substrates,” Appl. Phys. Lett. 86(9), 093507 (2005).
    [7.12] Z. T. Zhu, E. Menard, K. Hurley, R. G.Nuzzo, and J. A. Rogers, “Spin on dopants for high-performance single-crystal silicon transistors on flexible plastic substrates,” Appl. Phys. Lett. 86(13), 133507 (2005).
    [7.13] J. H. Ahn, H. S. Kim, K. J. Lee, Z. Zhu, E. Menard, R. G. Nuzzo and J. A. Rogers, “High Speed, Mechanically Flexible Single-Crystal Silicon Thin-Film Transistors on Plastic Substrates,” IEEE Electron Device Letters, 27(6), 460-462 (2006).
    [7.14] Sung Hwan Won, Jang Kyun Chung, Chang Bin Lee, Hyun Chul Nam, Ji Ho Hur, and Jin Jang,“ Effect of Mechanical and Electrical Stresses on the Performance of an a-Si:H TFT on Plastic Substrate,” Journal of The Electrochemical Society, 151 (3), G167-G170, (2004).
    [7.15] H. Gleskova, P.I. Hsu, Z. Xi, J.C. Sturm, Z. Suo, and S. Wagner, “Field-effect mobility of amorphous silicon thin film transistors under strain,” Journal of Non-Crystalline Solids, 338–340, pp. 732-735, (2004).
    [7.16] Cody, G.D., Wronski, C.R., Abeles, B., Stephens, R.B., Brooks, B., 1980. “Optical characterization of amorphous silicon hydride films,” Solar Cells, 2, 227–243, (1980).
    [7.17] S. Sherman, S. Wagner, and R. A. Gottscho, “Correlation between the valence- and conduction-band-tail energies in hydrogenated amorphous silicon,” Appl. Phys. Lett. 69, 3242, (1996).
    [7.18] S. Sherman, P.Y. Lu, R.A Gottscho, and S. Wagner, “TFT performance- material quality correlation for a-Si:H deposited at high rates,” Mat. Res. Soc. Proc., vol. 377, pp. 749-753, (1995).
    [7.19] H. Gleskova, S. Wagner, W. Soboyejo, and Z. Suo, “Electrical response of amorphous silicon thin-film transistors under mechanical strain,” J. Appl. Phys., vol. 92, pp. 6224–6229, (2002).
    [7.20] G. D. Cody, T. Tiedje, B. Abeles, B. Brooks, and Y. Goldstein, “Disorder and the Optical-Absorption Edge of Hydrogenated Amorphous Silicon,” Phys. Rev. Lett. 47, 1480–1483, (1981).
    [7.21] S. Luan and G. W. Neudeck, “An experimental study of the source/drain
    parasitic resistance effects in amorphous silicon thin film transistors,” J. Appl. Phys., vol. 72(2), p. 766 (1992).
    [7.22] M. J. Powell, C. Glasse, P. W. Green, I. D. French, and I. J. Stemp,
    “An.amorphous silicon thin-film transistor with fully self-aligned top gate.
    structure,” IEEE Electron Device Lett., vol. 21(3), pp. 104–106, 2000.

    Chapter 8

    [8.1] R. Baeuerle, J. Baumbach, E. Lueder, and J. Siegordner, “A MIM-driven transmissive display with color filters on 2 in diagonal plastic substrates,” in SID’99 Digest, Society of Information Display, p. 14, (1999).
    [8.2] H. Gleskova, R. Konenkamp, S. Wagner, Q. Zhang, and D. S. Shen, “Electro- photographically patterned thin-film silicon transistors,” IEEE Electron Device Lett., vol. 17, pp. 264–266, (1996).
    [8.3] M. J. Powell. “Charge trapping instabilities in amorphous silicon-silicon nitride thin film transistors,” Appl. Phys. Lett.. vol. 43, pp. 597-599, (1983).
    [8.4] A. R. Hepbum, J. M. Marshall, C. Main, M. J. Powell and C. Van Berkel, “Metastable defects in amorphous-silicon thin-film transistors," Phys.Rev.Lett., 56, p.2215-2218, (1986).
    [8.5] R. A. Street and C. C. Tsai, “Fast and slow states at the interface of amorphous silicon and silicon nitride,” Appl. Phys. Lett., vol. 48. pp. 1672-1674, (1986).
    [8.6] M. J. Powell, C. van Berkel, I. D. French, and D. H. Nicholls, “Bias dependence of instability mechanisms in amorphous silicon thin film transistors,” Appl. Phys. Lett., vol. 51, p. 1242, (1987).
    [8.7] R. E. I. Schropp and J. F. Verwey, “Instability mechanism in hydrogenated amorphous. silicon thin-film transistors”, Applied Physics Letters, Vol. 50, p. 185, (1987).
    [8.8] M. J. Powell, C. van Berkel, and J. R. Hughes, “Time and temperature dependence of instability mechanisms in amorphous silicon thin-film transistors,” Appl. Phys. Lett., Vol. 54, p. 1323-1325, (1989).
    [8.9] A. V. Gelatos, and J. Kanicki, “Bias stress-induced instabilities in amorphous silicon nitride/hydrogenated amorphous silicon structures: Is the “carrier- induced defect creation” model correct?” Appl. Phys. Lett., Vol. 57, p. 1197-1199, (1990).
    [8.10] M. J. Powell, C. van Berkel, A. R. Franklin, S. C. Deane and W. I. Milne,
    “Defect pool in amorphous-silicon thin-film transistors,” Phys.Rev.B, 45,
    p.4160-4170, (1992)
    [8.11] S. H. Won, J. K. Chung, C. B. Lee, H. C. Nam, J. H. Hur, and J. Jang, “Effect
    of Mechanical and Electrical Stresses on the Performance of an a-Si:H TFT
    on Plastic Substrate,” J. Electrochem. Soc., 151 (3), G167, (2004).
    [8.12] H. Gleskova, S. Wagner, V. Ga parík, and P. Ková,"150° C. Amorphous
    silicon thin-film transistor technology for polyimide substrates," Journal of
    The Electrochemical Society, Vol. 148 (7), G370-G374, (2001)
    [8.13] H. Gleskova and S. Wagner, “Electron mobility in amorphous silicon
    thin-film transistors under compressive strain,” Appl. Phys. Lett., 79, 3347,
    (2001).
    [8.14] H. Gleskova, S. Wagner, W. Soboyejo, Z. Suo, ” Effects of mechanical strain
    on amorphous silicon thin-film transistors,” Mat. Res. Soc. Symp. Proc., 715,
    667, (2002)
    [8.15] P. Servati, A. Nathan, “Functional pixel circuits for elastic AMOLED
    displays,” (INVITED) Proc. IEEE, Special Issue on Flexible Electronics
    Technology, vol. 93, pp. 1257-1264, (2005).
    [8.16] H. Gleskova, P.I. Hsu, Z. Xi, J.C. Sturm, Z. Suo, and S. Wagner, “Field-effect
    mobility of amorphous silicon thin film transistors under strain,” Journal of
    Non-Crystalline Solids, 338- 340, pp. 732-735, (2004).
    [8.17] P. I. Hsu, M. Huang, H. Gleskova, Z. Xi, Z. Suo, S. Wagner and J. C. Sturm,
    “Effects of mechanical strain on TFTs on spherical domes,” IEEE Trans.
    Electron. Dev., 51 (3), pp. 371-377, (2004)
    [8.18] C. Y. Huang, J. W. Tsai, T. H. Teng, C. J. Yang, and H. C. Cheng, “Turnaround Phenomenon of Threshold Voltage Shifts in Amorphous Silicon Thin Film Transistors under Negative Bias Stress, “ Jpn. J. Appl. Phys. 39, p.5763, (2000)
    [8.19] H. Gleskova, S. Wagner, W. Soboyejo and Z. Suo, “Electrical response of amorphous silicon thin-film transistors under mechanical strain,” J. Appl. Phys., 92 (10), p.6224-6229, (2002)
    [8.20] J. G. Shaw and M. Hack, “An Analytical Model for Calculating Trapped Charge in Amorphous Silicon, ” J. Appl. Phys., 64 (9), p.4562 (1988).
    [8.21] M. J. Powell, C. van Berkel, A. R. Franklin, S. C. Deane and W. I. Milne, “Defect pool in amorphous-silicon thin-film transistors,” Phys.Rev.B, 45 (8), p. 4160-4170, (1992).
    [8.22] C. Y. Huang, T. H. Teng, J. W. Tsai, and H. C. Cheng, “The Instability Mechanisms of Hydrogenated Amorphous Silicon Thin Film Transistors under AC Bias Stress,” Jpn. J. Appl. Phys., 39, p.3867, (2000)
    [8.23] R. E. I. Schropp, J. Snijder, and J. F. Verwey, “A self-consistent analysis of temperature-dependent field-effect measurements in hydrogenated amorphous silicon thin-film transistors,” J. Appl. Phys. 60, p.643, (1986).
    [8.24] R. Schumacher, P. Thomas, K. Weber, W. Fuhs, F. Djamdji, P. G. Le Comber, and R. E. I. Schropp, “Temperature-dependent effects in field-effect measurements on hydrogenated amorphous silicon thin-film transistors,” Phil. Mag. B, 58, p389-410, (1988)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE