簡易檢索 / 詳目顯示

研究生: 李炯頤
Lee, Chiung-Yi
論文名稱: 利用潮流分配因子計算電力損失及節點電價
Power Losses and Nodal Prices Calculations Using Power Distribution Factors
指導教授: 朱家齊
Chu, Chia-Chi
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 62
中文關鍵詞: 潮流分配因子電力損失節點電價最佳潮流調度
外文關鍵詞: Optimal Power Flow, Nodal Prices, Power Flow Congestion Distributed Factors, Power Losses
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今電力市場已朝向自由化發展,由個別電力網路相互連接所形成之電力池,使得市場參與者在電力供需及電價上有著更多選擇。然而,由於網路互連與自由交易使得維持系統運作在規範內複雜度大增。系統操作者透過節點電價得以有效進行監控與協調,評估每項交易對系統所帶來的影響,確保同時兼顧系統穩定度與滿足負載需求。節點電價不但具有決定邊際成本或邊際價格的能力,更能進一步利用在壅塞管理上。
    由於自由交易的特性使得用電需求瞬息萬變,故節點電價的運算必需相當快速以便即時反應。本論文基於潮流分配因子,提出一種相當直觀且易於運用的方法,主要貢獻如下:
    一、使節點電價之計算可兼顧運算速度與準確度。其運算時間僅稍長於最佳直流潮流;而其精確度遠高於最佳直流潮流,近似最佳交流潮流。
    二、證明在最佳潮流問題中,傳統的各節點功率平衡方程式可以簡化成系統總功率平衡方程式,計算結果不變。由於限制條件大幅減少,使得建構最佳潮流問題及計算節點電價更為容易。
    三、透過潮流分配因子,可快速估算出損失因子;透過系統總功率平衡方程式則可求出參考發電成本。故而得以一併算出節點電價中的參考發電成本、電力損失成本及壅塞成本。
    因此,利用基於潮流分配因子之最佳潮流,便能快速進行調度與計算節點電價,達到維持系統穩定及儘可能滿足所有負載的目標。

    關鍵詞:潮流分配因子、電力損失、節點電價、最佳潮流調度。


    Nodal prices, or locational marginal prices (LMP), originates from the optimal power flow (OPF), are a key instrument in the restructuring of electricity. These nodal price signals can reflect the differential value of generation and consumption at each location arising from physical characteristics of electricity networks, namely the existence of losses and capacity constraints. They do also provide a measure for consumption and generation congestion management, both in the short and in the long run.
    Inspired by recent developments of power flow congestion distributed factors (CDF), we will re-examine the optimal power flow in terms of these distribution factors. The main contributions of this thesis can be summarized as follows:
    1. We propose a fast method for calculating nodal prices of a power network. Its speed is compatible with the DC-OPF while the accuracy is compatible with the standard AC-OPF.
    2. Instead of using the real power balanced equations at each node as the equality constraints in the standard OPF formulation, we use the total real power balance equations in the OPF formulation. As the number of equality constraints are significantly reduced, the computation time will also decrease.
    3. Since the total system losses can be expressed in terms of CDFs, nodal prices, generation costs, loss cost, and congestion costs can also be easily obtained.
    Simulations on two IEEE Test systems have been performed to demonstrate the accuracy of the proposed method.

    Keywords : Optimal Power Flow, Nodal Prices, Power Flow Congestion Distributed Factors, Power Losses

    摘要 I Abstract II 目錄 III 圖目錄 V 表目錄 VI 第一章 緒論 1 1.1 研究背景與動機 1 1.2 相關文獻回顧 2 第二章 潮流分配因子及電力損失 5 2.1 簡介CDF及TCDF 5 2.1.1 CDF 6 2.1.2 TCDF 7 2.1.3 CDF與TCDF的關係 8 2.2 電力損失及損失因子之關係 8 2.3 以潮流分配因子估測電力損失 10 2.3.1 利用CDF估測電力損失 10 2.3.2 利用TCDF估測電力損失 11 2.3.3 CDF與TCDF所估測之電力損失之比較 14 2.4 範例說明 15 2.5 本章總結 22 第三章 節點電價計算 23 3.1 最佳交流潮流與最佳直流潮流 23 3.2 應用潮流分配因子及損失因子計算節點電價 25 3.2.1 問題描述 25 3.2.2 節點電價的意義 30 3.2.3 基於CDF的最佳直流潮流(I) 32 3.2.4 基於CDF的最佳直流潮流(II) 32 3.2.5 基於TCDF的最佳潮流 33 3.3 不同功率平衡公式之等效電價 35 第四章 模擬結果 39 4.1 IEEE 39-Bus系統 39 4.1.1 標準負載 39 4.1.2 負載增加 43 4.2 IEEE 118-Bus系統 47 第五章 結論 52 參考文獻 54 附錄 56

    [1]
    Naresh Acharya and N. Mithulananthan,“Locating series FACTS devices for congestion management in deregulated electricity markets”, Electric Power Systems Research, Vol. 77, No. 3-4, pp. 352-360, March 2007.
    [2]
    Arthur R. Bergen and Vijay Vittal, Power System Analysis, Prentice Hall, 1999.
    [3]
    Judith B. Cardell, “Marginal Loss Pricing for Hours With Transmission Congestion”, IEEE Trans. on Power Systems, Vol. 22, No. 4, pp. 1466-1474, November 2007.
    [4]
    Xu Cheng and Thomas Overbye,“An Energy Reference Bus Independent LMP Decomposition Algorithm”, IEEE Trans. on Power Systems, Vol. 21, No. 3, pp. 1466-1474, November 2007.
    [5]
    A.A.El-keib and X.Ma,“Calculating Short-Run Marginal Costs of Active and Reactive Power Production”, IEEE Trans. on Power Systems, Vol. 12, No. 2, pp. 559-565, May 1997.
    [6]
    Richard D. Christie,Bruce F. Wollenberg and Ivar Wangensteen,“Transmission Management in the Deregulated Environment”,Proceedings Of The IEEE, Vol. 88, NO. 2, pp. 1041-1049, August 2006.
    [7]
    Yong Fu, and Zuyi Li,“Different Models and Properties on LMP Calculations”, IEEE Power Engineering Society General Meeting, pp.1-11, 2006.
    [8]
    D. P. Kothari and J. S. Dhillon, Power System Optimization, PHI, New Delhi, 2009.
    [9]
    Ashwani Kumar, S. C. Srivastava and S. N. Singh,“A Zonal Congestion Management Approach Using Real and Reactive Power Rescheduling”, IEEE Trans On Power Systems, Vol. 19, No. 1, pp. 554- 562, February 2004.
    [10]
    Fangxing Li and Rui Bo,“DCOPF-Based LMP Simulation: Algorithm,Comparison With ACOPF, and Sensitivity“, IEEE Trans. On Power Systems, Vol. 22, No. 4, pp. 1475-1485, November 2007.
    [11]
    Tina Orfanogianni and George Gross,“A General Formulation for LMP Evaluation”, IEEE Trans On Power Systems, Vol. 22, No. 3, pp. 1163-1173, August 2007.
    [12]
    Thomas J. Overbye, Xu Cheng and Yan Sun,“ A Comparison of the AC and DC Power Flow Models for LMP Calculations”, Proceedings of the 37th Hawaii International Conference on System Sciences, pp. 1-9,January 2004.
    [13]
    Allen J. Wood and Bruce F. Wollenberg, Power Generation Operation and Control. New York:Wiley,1996.
    [14]
    Tong Wu, Ziad Alaywan, and Alex D. Papalexopoulos,“Locational Marginal Price Calculations Using the Distributed-Slack Power-Flow Formulation”, IEEE Trans. on Power Systems, Vol. 20, No. 2, pp. 1188- 1190, May 2005.
    [15]
    Chien-Ning Yu and Marija D. Ilic,“Congestion Clusters-Based Markets for Transmission Management”, IEEE Power Engineering Society Winter Meeting, Vol. 2,pp. 821- 832, February 1999.
    [16]
    Matpower, http://www.pserc.cornell.edu/matpower/

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE