簡易檢索 / 詳目顯示

研究生: 楊子毅
Yang, Zi Yi
論文名稱: 簡化型蒙地卡羅射源模型 應用於筆型射束掃描質子治療之劑量計算研究
A Simplified Monte Carlo Source Model used in Dose Calculation for Proton Pencil-beam Scanning
指導教授: 許榮鈞
Sheu, Rong Jiun
陳俊丞
Chen, Chin Cheng
口試委員: 江祥輝
劉鴻鳴
學位類別: 碩士
Master
系所名稱: 原子科學院 - 核子工程與科學研究所
Nuclear Engineering and Science
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 102
中文關鍵詞: 質子治療蒙地卡羅法劑量計算筆型射束掃描
外文關鍵詞: Proton therapy, Monte Carlo method, Dose calculation, Pencil-beam scanning
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究發展一套簡化的蒙地卡羅射源模型適用於筆型射束掃描式質子治療的三維劑量分佈計算,兼具合理的計算效率與劑量準確度,是一種除了治療計劃系統外的獨立劑量驗證方法。
    由於筆型射束掃描式質子治療的特性,其射源項的模擬可省去許多傳統質子治療機頭內複雜組件的影響,本研究的射源模型考慮了與質子射束特性直接相關的重要參數,這些參數的來源有二:第一部分的參數來自臨床治療前試運轉的測量結果,藉由測量不同能量(100-226 MeV)質子束在水箱假體的積分深度劑量分佈,焦斑大小及有效射源位置,可以決定一簡化之射源項;第二部分包括依計畫腫瘤體積與位置選定之射束能量、焦斑位置與監控單位。
    本研究依射束特性的測量結果建立了一個簡化型的射源資料庫,配合直接來自治療計劃系統輸出檔案中的治療參數,自動整合至蒙地卡羅程式FLUKA進行模擬,該蒙地卡羅計算劑量結果可透過適當參數修正而成為三維空間絕對劑量分佈,再與治療計劃劑量計算結果與實際測量結果進行比較。
    本研究選用了一系列不同案例來檢驗此簡化射源模型是否足夠完善,從最簡單的矩形模型到實際臨床攝護腺案例。計算時間若使用本實驗室24核心的電腦,每個案例的計算都能夠在一小時內完成,平均計算所需時間約為四十分鐘,治療計劃腫瘤體積內計算結果的統計誤差都在2%以內,且與治療計畫計算結果或實際量測相比都有很高的一致性。假體中不同深度下的二維劑量加馬評估通過率幾乎都在95%以上,證明此簡化型蒙地卡羅射源模型確實能夠準確地預估筆型射束掃描式質子治療的三維劑量分佈,並兼具合理的計算效率。未來持續的發展應可用於例行品保作業或臨床治療計劃的獨立劑量驗證工具。


    A simplified Monte Carlo (MC) source model for proton pencil-beam scanning (PBS) was proposed and demonstrated in this study. Three-dimensional dose distribution in target can be obtained by feeding treatment field parameters exported from a treatment planning system (TPS) into the source model. A PBS source term (initial energy and spread) as a function of proton energy (100-226 MeV) was constructed to directly imitate the measured integral depth-dose curves (IDDCs), which is independent of any component in treatment nozzle. The spot divergence and deflection were determined from the measured spot sizes at the isocenteric plane and source-to-axis distance respectively, and the absolute dose per particle at 2-cm depth for 100-226 MeV protons were used as the MU weighting correction factors.
    Simple geometry structures and TG-119 phantoms were created in the TPS as the planning target volumes (PTVs) in a 40×40×40 cm3 water phantom. The range shifters (water equivalent thickness of 4.0 cm and 7.5 cm) were used for the PTVs at depths <10 cm. The calculated depth-dose curves, point doses, and plane dose distributions by the simplified MC source model were compared with measurements using multi-layer ion chambers, parallel plate ion chamber, and MatriXX PT detectors (IBA dosimetry GmbH, Schwarzenbruck, Germany), as well as the TPS. The comparisons of absolute dose profiles at the isocenter depth were with the error within 2% compared in plateau region. The Gamma passing rate were showed and almost all of cases can reach the goal of 95% compared with the TPS calculations and measurements respectively, which met the criteria of 3% and 3 mm in a interpolated grid size of 1 mm.
    Over all, the typical PBS treatment field simulations could be completed in an hour using a 24-core computing node. The simplified Monte Carlo source model provides accurate 3D dose distribution in water with clinically-acceptable computational efficiency. The current model could be used for the commissioning of treatment planning system, independent MU check, and patient-specific quality assurance in a homogeneous water phantom.

    摘要 i Abstract ii 誌謝 iv 目錄 v 表目錄 viii 圖目錄 ix 第一章 緒論 1 1.1 研究目的及動機 1 1.2 文獻回顧 2 第二章 質子癌症治療介紹 4 2.1 質子治療現況 4 2.2 質子射束的能量沉積機制 7 2.2.1 布拉格峰 7 2.2.2 帶電粒子射程 10 2.2.3 擴散型布拉格峰 12 2.2.4 射束傳輸系統 15 2.2.5 監控單位 18 第三章 簡化的蒙地卡羅射源模型 22 3.1 蒙地卡羅法介紹 23 3.2 模擬程式與方法介紹 24 3.2.1 模擬計算工具FLUKA介紹 24 3.2.2 模擬方法 26 3.3 簡化射源模型參數探討 27 3.3.1 能量偏移 27 3.3.2 能量發散 31 3.3.3 焦斑大小 35 3.3.3.1 量測方法與模擬假設情況 38 3.3.3.2 質子束在空氣中的散射 40 3.3.4 射源位置 41 3.3.4.1 射源至中心軸距離與射源至表面距離 41 3.3.4.2 虛擬射源 42 3.3.4.3 有效射源至中心軸距離 44 3.3.5 射束能量 46 3.3.6 焦斑位置 at isocenter plane 47 3.3.7 射束監控單位與權重因子 48 3.3.7.1 權重修正因子 49 3.3.7.2 劑量驗證 50 3.3.8 其他參數探討 51 第四章 簡化射源模型在FLUKA程式上的實現 53 4.1 使用者自訂的程序 53 4.2 幾何模型 53 4.3 低限能量 54 4.4 使用者自訂的射源檔與FLUKA模擬設定 55 第五章 治療計畫劑量驗證的應用 59 5.1 程序流程圖 59 5.2 資料轉檔(模擬前) 60 5.3 資料轉檔(模擬後) 62 5.4 相對劑量之驗證與劑量圖譜比較 65 5.4.1 三種不同標靶的治療劑量案例 66 5.4.1.1 立方體標靶的治療劑量 66 5.4.1.2 字母L形狀標靶的治療劑量 68 5.4.1.3 實際臨床攝護腺腫瘤標靶的治療劑量 69 5.4.1.4 加馬評估比較 69 5.4.2 五種不同矩形標靶的治療劑量比較 71 5.5 絕對劑量校正 74 5.6 其他案例 77 5.7 計算時間 79 第六章 結論與未來工作 80 參考資料 81 附錄 87 I. FLUKA使用者自定程序Source.f 87 II. 轉檔程式han_pre.c 95 III. 轉檔程式han_after.c 101

    [1] M. Goitein and T. Miller, "Planning proton therapy of the eye," Med. Phys., vol. 10, pp. 275-283, 1983.
    [2] A. Tourovsky, A. J. Lomax, U. Schneider, and Pedroni, "Monte Carlo dose calculations for spot scanned proton therapy," Phys. Med. Biol., vol. 50, pp. 971-981, 2005.
    [3] L. Hong, M. Goitein, M. Bucciolini, R. Comiskey, B. Gottschalk, S. Rosenthal, et al., "A pencil beam algorithm for proton dose calculations," Phys. Med. Biol., vol. 41, pp. 1305-1330, 1996.
    [4] N. Koch and W. Newhauser, "VIRTUAL COMMISSIONING OF A TREATMENT PLANNING SYSTEM FOR PROTON THERAPY OF OCULAR CANCERS," Radiation Protection Dosimetry, vol. 115, pp. 159-163, 2005.
    [5] C. Rethfeldt, H. Fuchs, and K.-U. Gardey, "Dose distributions of a proton beam for eye tumor therapy: Hybrid pencil-beam raytracing calculations," Med. Phys., vol. 33, pp. 782-791, 2006.
    [6] U. Titt, Y. Zheng, O. N. Vassiliev, and W. D. Newhauser, "Monte Carlo investigation of collimator scatter of proton-therapy beams produced using the passive scattering method," Phys. Med. Biol., vol. 53, pp. 487-504, 2008.
    [7] J. Hérault, N. Iborra, B. Serrano, and P. Chauvel, "Spread-out Bragg peak and monitor units calculation with the Monte Carlo Code MCNPX," Med. Phys., vol. 34, pp. 680-688, 2007.
    [8] N. C. Koch and W. D. Newhauser, "Development and verification of an analytical algorithm to predict absorbed dose distributions in ocular proton therapy using Monte Carlo simulations," Phys. Med. Biol., vol. 55, pp. 833-853, 2010.
    [9] H. Jiang and H. Paganetti, "Adaption of geant4 to Monte Carlo dose calculations based on CT data," Med. Phys., vol. 31, pp. 2811-2818, 2004.
    [10] T.Aso, A.Kimura, S.Tanaka, H.Yoshida, N.Kanematsu, T.Sasaki, et al., "Verification of the Dose Distributions with GEANT4 Simulation for Proton Therapy," IEEE, 2004.
    [11] H. Paganetti, H. Jiang, K. Parodi, R. Slopsem, and M. Engelsman, "Clinical implementation of full Monte Carlo dose calculation in proton beam therapy," Phys. Med. Biol., vol. 53, pp. 4825–4853, 2008.
    [12] T. Akagi, T. Aso, G. Iwai, A. Kimura, S. Kameoka, S. B. Lee, et al., "Geant4-based particle therapy simulation framework for verification of dose distributions in proton therapy facilities," Progress in Nuclear Science and Technology, vol. 4, pp. 896-900, 2014.
    [13] K. Parodi, A. Ferrari, F. Sommerer, and H. Paganetti, "Clinical CT-based calculations of dose and positron emitter distributions in proton therapy using the FLUKA Monte Carlo code," Phys. Med. Biol., vol. 52, pp. 3369-3387, 2007.
    [14] A. E. Torshabi, A. Terakawa, K. Ishii, H. Yamazaki, S. Matsuyama, Y. Kikuchi, et al., "A CT-based Monte Carlo calculation for proton therapy using a new interface program " World Academy of Science, Engineering and Technology, vol. 3, 2009.
    [15] G. O. Sawakuchi, "An MCNPX Monte Carlo model of a discrete spot scanning proton beam therapy nozzle," Med. Phys., vol. 37, pp. 4960-4970, 2010.
    [16] M. Fippel and M. Soukup, "A Monte Carlo dose calculation algorithm for proton therapy," Med. Phys., vol. 31, pp. 2263-2273, 2004.
    [17] J. Perl and J. S. J. S. B. F. H. Paganetti, "TOPAS: An innovative proton Monte Carlo platform for research and clinical applications," Med. Phys., vol. 39, pp. 6818-6837, 2012.
    [18] L. Grevillot, D. Bertrand, F. Dessy, N. Freud, and D. Sarrut, "A Monte Carlo pencil beam scanning model for proton treatment plan simulation using GATE/GEANT4," Phys. Med. Biol., vol. 56, pp. 5203-5219, 2011.
    [19] A. Mairani, T. T. B¨ohlen, A. Schiavi, T. Tessonnier, S. Molinelli, S. Brons, et al., "A Monte Carlo-based treatment planning tool for proton therapy," Phys. Med. Biol., vol. 58, pp. 2471-2490, 2013.
    [20] C. Beltran, Y. Jia, R. Slopsema, D. Yeung, and Z. Li, "A simplified methodology to produce Monte Carlo dose distributions in proton therapy," JOURN AL OF APPLIED CLINICAL MEDICAL PHYSICS, vol. 15, 2014.
    [21] H. Paganetti, "Dose to water versus dose to medium in proton beam therapy," Phys. Med. Biol., vol. 54, pp. 4399-4421, 2009.
    [22] X. Jia, J. Sch¨umann, H. Paganetti, and S. B. Jiang, "GPU-based fast Monte Carlo dose calculation for proton therapy," Phys. Med. Biol., vol. 57, pp. 7783-7797, 2012.
    [23] C. G. A. J. E. NcDonough, "Physics Considerations in Proton Therapy," Radiation Medicine Gounds 1:3, pp. 415-440, 2010.
    [24] PTCOG. (2014/May). http://www.ptcog.ch/.
    [25] ICRU, "Prescribing, recording, and reporting proton-beam therapy," 2007.
    [26] 林口長庚醫院質子暨放射治療中心. (2015/February). https://www1.cgmh.org.tw/intr/intr2/c33e0/shouxie.html#.VQZEmI6UeG4.
    [27] C. M. C. Ma and T. Lomax, Proton and Carbon Ion Therapy: Taylor & Francis, 2012.
    [28] T. F. DeLaney and H. M. Kooy, Proton and charged particle radiotherapy, 2007.
    [29] A. M. Koehler, "Dosimetry of Proton Beams Using Small Silicon Diodes," Radiation Research Supplement, vol. 7, pp. 53-63, 1967.
    [30] H. Paganetti, Proton Therapy Physics: Boca Raton, FL : CRC Press/Taylor & Francis, 2012.
    [31] D. Schardt and T. E. D. Schulz-Ertner, "Heavy-ion tumor therapy: Physical and radiobiological benefits," REVIEWS OF MODERN PHYSICS, vol. 82, 2010.
    [32] H. Paganetti, "Range uncertainties in proton therapy and the role of Monte Carlo simulations," Phys. Med. Biol., vol. 57, pp. R99-R117, 2012.
    [33] F. H. Attix, Introduction to radiological physics and radiation dosimetry: John Wiley & Sons, 1986.
    [34] IBA. (2015/June). http://www.iba-protontherapy.com/.
    [35] M. J. Eblan and K. A. Cengel, "Biology of Proton Therapy: Old and New Considerations," Radiation Medicine Gounds 1:3, pp. 441-454, 2010.
    [36] K. P. Gall, L. Verhey, J. Alonso, J. Castro, J. M. Collier, W. Chu, et al., "State of the Art New proton medical facilities for the Massachusetts General Hospital and the University of California Davis Medical Center," Nuclear Instruments and Methods in Physics Research B79, pp. 881-884, 1993.
    [37] Wikipedia. (2015/March). http://zh.wikipedia.org/.
    [38] A. R. Smith, "Present Status and Future Developments in Proton Therapy," American Institute of Pliysics, 2009.
    [39] T. Kanai, K. Kawachi, Y. Kumamoto, H. Ogawa, T. Yamada, H. Matsuzawa, et al., "Spot scanning system for proton radiotherapy," Med. Phys., vol. 7, pp. 365-369, 1980.
    [40] W. T. Chu, B. A. Ludewigt, and T. R. Renner, "Instrumentation for treatment of cancer using proton and light-ion beams," Rev. Scl. Instrum., vol. 64, pp. 2055-2122, 1993.
    [41] T. Haberer, W. Becher, D. Schardt, and G. Kraft, "Magnetic scanning system for heavy ion therapy," Nuclear Instruments and Methods in Physics Research A, vol. A330, pp. 296-305, 1993.
    [42] O. C. Barbara Ursula Schaffner, "MONITOR UNITS CALCULATION METHOD FOR PROTON FIELDS " Ulllted States Patent, 2011.
    [43] H. M. Kooy, M. Schaefer, S. Rosenthal, and T. Bortfeld, "Monitor unit calculations for range-modulated spread-out Bragg peak fields," Phys. Med. Biol., vol. 48, pp. 2797-2808, 2003.
    [44] H. M. Kooy, S. J. Rosenthal, M. Engelsman, A. Mazal, R. L. Slopsema, H. Paganetti, et al., "The prediction of output factors for spread-out proton Bragg peak fields in clinical practice," Phys. Med. Biol., vol. 50, pp. 5847-5856, 2005.
    [45] T. Bortfeld and W. Schlegel, "An analytical approximation of depth - dose distributions for therapeutic proton beams," Phys. Med. Biol., vol. 41, pp. 1331-1339, 1996.
    [46] N. Koch, W. D. Newhauser, U. Titt, D. Gombos, K. Coombes, and G. Starkschall, "Monte Carlo calculations and measurements of absorbed dose per monitor unit for the treatment of uveal melanoma with proton therapy," Phys. Med. Biol., vol. 53, pp. 1581-1594, 2008.
    [47] W. D. Newhauser, J. Burns, and A. R. Smith, "Dosimetry for ocular proton beam therapy at the Harvard Cyclotron Laboratory based on the ICRU Report 59," Med. Phys., vol. 29, pp. 1953-1961, 2002.
    [48] IAEA, "TRS-398 Absorbed Dose Determination in External Beam Radiotherapy: An International Code of Practice for Dosimetry based on Standards of Absorbed Dose to Water," 2006.
    [49] H. Paganetti, "Monte Carlo calculations for absolute dosimetry to determine machine outputs for proton therapy fields," Phys. Med. Biol., vol. 51, pp. 2801-2812, 2006.
    [50] A. Ferrari, P. R. Sala, A. Fasso, and J. Ranft, "FLUKA: A Multi-Particle Transport Code," 2011.
    [51] F. Ballarini, G. Battistoni, F. Cerutti, A. Empl, A. Fass`o, A. Ferrari, et al., "Nuclear models in FLUKA: present capabilities,open problems and future improvements INTERNATIONAL CONFERENCE ON NUCLEAR DATA FOR SCIENCE & TECHNOLOGY," 2004.
    [52] PTW. (2015/March). http://www.ptw.de.
    [53] C. C., C. C., M. D., G. M., and M. M.F., "Stability of Spot Sizes and Positions of Proton Pencil Beam Scanning: a Six-month Experience Report, Proceedings to the 53 Annual Meeting for the Particle Therapy Cooperative Group (PTCOG) 8-14 June 2014," International Journal of Particle Therapy, vol. 1, p. 580, 2014.
    [54] D. A. Low and J. F. Dempsey, "Evaluation of the gamma dose distribution comparison method," Medical Physics, vol. 30, 2003.
    [55] D. A. Low, W. B. Harms, S. Mutic, and J. A. Purdy, "A technique for the quantitative evaluation of dose distributions," Medical Physics, vol. 25, 1998.
    [56] AAPM, "TG-119 IMRT Commissioning Tests Instructions for Planning, Measurement, and Analysis " 2009(Oct).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE