研究生: |
游博進 Yu, Po-Chin |
---|---|
論文名稱: |
噴印銀墨與導電高分子透明網格狀電極之製程開發及其性質探討 Development and Characterization of Inkjet-Printed-Silver and Conducting Polymer Transparent Mesh-Type Electrodes |
指導教授: |
劉通敏
Liou, Tong-Miin 洪健中 Hong, Chien-Chong |
口試委員: |
黃國柱
郭宗枋 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2013 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 110 |
中文關鍵詞: | 噴墨技術 、透明電極 、金屬網格 、電極優值理論 、軟性電子 |
外文關鍵詞: | Ink-jet Printing, Transparent Electrodes, Metal Grids, Figure of Merit Fomula, Flexible Electronics |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
透明導電薄膜廣泛地應用於太陽電池、發光元件及消費性電子產品中,作為電流與光線通過的媒介,因此其導電性質與透光度直接地影響了元件的效率。近年來銦錫氧化物(ITO, Indium tin oxide)成為了透明電極的主流材料。但隨著需求量的劇增以及稀有金屬銦產量的限制下,ITO的價格亦隨之飆漲。尋找ITO替代材料議題便逐漸受到重視。其中關鍵技術在於以同樣的成本條件,製備導電性及透光度皆足以媲美ITO的透明導電薄膜。
本研究提出以材料利用率高的噴墨製程噴印銀網格電極,配合添加物修飾後的導電高分子材料(PEDOT),合成複合式透明網狀電極。其中網狀電極的金屬線段寬度與線段間距決定了電極的透光度與導電性,故特別針對過去文獻不足之處首度建構數學理論模型,對於網格外觀尺寸與透明電極優值之關係進行分析,求得最佳線段寬距比為0.05,並以實驗方法驗證線段寬距比與透明電極優值之關係曲線的準確性。其次,為了進一步增加電極的導電性,以重複噴印的方式提高線段的深寬比,並研究噴印層數1至4層的線段形貌、導電性及透光度的變化,成功地在透光度維持90%以上的狀況下,使導電度提升至單層噴印50倍。另外,考慮到應用於元件時塗佈後續材料的可能性,本研究引進熱壓平坦化成功使平均厚度超過150 nm 的金屬線段降至10 nm以下,故電極表面具備高度平整性。整合上述製程製備透明網狀電極後,量測其片電阻值為7.2 Ω/□,透光度為84.03 %,計算可得透明電極優值為24.39×10-3 Ω-1。與過去同樣研究厚度為奈米等級之電極的文獻結果相比,較平均值(11.78×10-3 Ω-1 )與最佳值(22.13×10-3 Ω-1)分別提升了107%與10.2%。此外,為了驗證電極的可繞性與可靠度,本研究亦針對工業界需求進行導線的可繞性測試,在繞曲曲率半徑為11 mm的條件下,進行往返±135°的彎曲。在經過23000次的繞曲次數後,電極的電阻值上升幅度仍在10%以內,較過去文獻的最佳結果高出15000次。
Transparent conductive films has been widely used in solar cells, LED and consumer electronics as a medium of electric current and light. Its conductivity and transmittance affect the efficiency of these devices. The mainstream material for transparent conductor is ITO (indium tin oxide) in recent years. However, the price of ITO has increased dramatically due to the huge demand and the strained supply of indium. Seeking the replacement materials for ITO becomes an important issue, and the way how to fabricate a transparent conductor with comparable conductivity and transmittance under the same cost is the only solution.
This study presents a transparent mesh-type electrode by integrating inkjet-printed-silver and modified conductive polymer (PEDOT). A mathematical model has been proposed for calculating the optimized grid pattern, and the optimized line width/line spacing ratio is 0.05 by this model. Furthermore, the theoretical relationship between line width/line spacing ratio and figure of merit has been verified by experimental results. For improving the conductivity of electrodes, the aspect ratio of lines has been raised by overprinting. The conductivity of four-layers printed electrodes is 50 times as high as the conductivity of monolayer printed electrode, and their transmittance are still higher than 90%. Moreover, planarization of transparent mesh-type electrodes by hot-pressing has been proposed and demonstrated. The thickness of grid lines decreases from 150 nm to 10 nm by this planarization. Integrating all of these processes, the sheet resistance of fabricated electrode is 7.2 Ω/□, the transmittance is 84.03 % and the figure of merit is 24.39×10-3 Ω-1 which is 2 times as high as the mean value of the literature before. After 23000 times of bendings to a 11 mm radius curvature, the resistance incensement of electrode developed by this study is still less than 10%.
[1]T. Mustonen, Inkjet printing of carbon nanotubes for electronics application, Acta Universitatis Ouluensis C 346 (2009).
[2]R. G. Sweet, High-frequency oscillography with electrostatically deflected ink jets, Stanford Electronics Laboratory Technical Report No. 1722-1 (1964).
[3]H. P. Le, Progress and trends in ink-jet printing technology, Journal of Imaging Science and Technology, 42, 49 (1998).
[4]H. Li, T. C. Halsey, A. Lobkovsky, Singular shape of a fluid drop in an electric or magnetic field, Europhysics Letters, 27, 575 (1994).
[5]G. D. Martin, S. D. Hoath, I. M. Hutchings, Inkjet printing─the physics of manipulating liquid jets and drops, Journal of Physics: Conference Series, 105, 012001 (2008).
[6]K. K. B. Hon, L. Li, I. M. Hutchings, Direct writing technology─advanced and developments, CIRP Annals- Manufacturing Technology, 57, 601 (2008).
[7]N. Bugdayci, D. B. Bogy, F. E. Talke, Axisymmetric motion of radially polarized piezoelectric cylinders used in ink jet printing, IBM Journal of Research and Development, 27, 171 (1983).
[8]H. Wijshoff, The dynamics of the piezo inkjet printhead operation, Physics Reports, 491, 77 (2010).
[9]J. Y. Lee, S. T. Connor, Y. Cui, P. Peumans, Solution-processed metal nano-wire mesh transparent electrodes, Nano Letters, 8, 689 (2008).
[10]S. Hashemi, Foundations of materials science and engineering, McGraw Hill, 4th edition (2006).
[11]D.C. Paine, T. Whitson, D. Janiac, R. Beresford, C. O. Yang, B. Lewis, A study of low temperature crystallization of amorphous thin film indium–tin–oxide, Journal of Applied Physics, 85, 8445 (1999).
[12]Touch Display Research, ITO-replacement: non-ITO transparent conductor technologies, supply chain and market forecast report, May 2013 version (2013).
[13]C. W. Tang, Two layer organic photovoltaic cell, Applied Physics Letter, 48, 183 (1986).
[14]G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, Polymer Photovoltaic Cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions, Science, 270, 1789 (1995).
[15]G. Li, V. Shrotriya, J. S. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends, Nature Materials, 4, 864 (2005).
[16]Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. D. C. Bradley, M. Giles, I. Mcculloch, C. S. Ha, M. Ree, A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells, Nature Materials, 5, 197 (2005).
[17]J. W. Park, D. C. Shin and S.H. Park, Large-area OLED lightings and their applications, Semiconductor Science and Technology, 26, 034002 (2011)
[18]V. Shrotriya, E. H. Wu, G. Li, Y. Yao, and Y. Yang, Efficient light harvesting in multiple-device stacked structure for polymer solar cells, Applied Physics Letters 88, 064104 (2006).
[19]J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, G. C. Bazan, Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols, Nature Materials, 6, 497 (2007).
[20]K. C. Yung, X. Gu, C. P. Lee, H. S. Choy, Ink-jet printing and camera flash sintering of silver tracks on different substrates, Journal of Materials Processing Technology, 15, 2268 (2010).
[21]J. Perelaer, M. Klokkenburg, C. E. Hendricks, U. S. Schubert, Microwave flash sintering of inkjet-printed silver tracks on polymer substrates, Advanced Materials, 21, 4830 (2009).
[22]P. Calvert, Inkjet printing for materials and devices, Chemistry of Materials, 13, 3299 (2001).
[23]S. H. Ko, H. Pan, C. P. Grigoropoulos, C. K. Luscombe, J. M. J. Fr"e" ́chet, D. Poulikakos, All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticle, Nanotechnology, 18, 345202 (2007).
[24]X. Xu, O. A. Basaran, Computational analysis of drop-on-demand drop formation, Physics of Fluids, 19, 102111 (2007).
[25]D. Jang, D. Kim, J. Moon, Influence of fluid physical properties on ink-jet printability, Langmuir, 25, 2629 (2009).
[26]T. M. Liou, C. Y. Chan, K. C. Shih, Effects of actuating waveform, ink property, and nozzle size on piezoelectrically driven inkjet droplets, Microfluid Nanofluid, 8, 575 (2010).
[27]P. J. Smith, D. Y. Shin, J. E. Stringer, B. Derby, N. Reis, Direct inkjet printing and low temperature conversion of conductive silver patterns, Journal of Materials Science, 41, 4153 (2006).
[28]D. Soltman, V. Subramanian, Inkjet-printed line morphologies and temperature control of the coffee ring effect, Langmuir, 24, 2224 (2008).
[29]P. C. Duineveld, The stability of ink-jet printed lines of liquid with zero receding contact angle on a homogeneous substrate, Journal of Fluid Mechanics, 477, 175 (2003).
[30]R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, T. A. Witten, Capillary flow as the cause of ring stains from dried liquid drops, Nature, 389, 827 (1997).
[31]H. Meier, U. Löffelmann, D. Marger, P. J. Smith, J. G. Korvink, Inkjet printed, conducted 25μm wide silver tracks on unstructured polyimide, Phyisica Status Solidi A, 206, 1626 (2009).
[32]Y. T. Gizachew, L. Escoubas, J. J. Simon, M. Pasquinelli, J. Loiret, P. Y. Leguen, J. C. Jimeno, J. Martin, A. Apraiz, J. P. Aguerre, Towards ink-jet printed fine line front side metallization of crystalline silicon solar cells, Solar Energy Materials & Solar Cells, 95, S70 (2011)
[33]E. Ahlswede, W. Mühleisen, M. W. M. Wahi, J. Hanisch, M. Powalla, Highly efficient organic solar cells with printable low-cost transparent, Applied Physics Letters, 92, 143307 (2008).
[34]S. Na, S. Kim, J. Jo, D. Kim, Efficient and Flexible ITO-free organic solar cells using highly conductive polymer anodes, Advanced Material, 20, 4061 (2008).
[35]J. Zou, H. Yip, S. K. Hau, A. K. Y. Jen, Metal grid/conducting polymer hybrid transparent electrode for inverted polymer solar cells, Applied Physics Letters, 96, 203301 (2010).
[36]Y. Galagan, J. J. M. Rubingh, R. Andriessen, C. Fan, P. W. M. Blom, S. C. Veenstra, J. M. Kroon, ITO-free flexible organic solar cells with printed current collecting grids, Solar Energy Materials & Solar Cells, 95, 1339 (2010).
[37]Z. Yu, L. Li, Q. Zhang, W. Hu, Q. Pei, Silver Nanowire-polymer composite electrodes for efficient polymer solar cells, Advanced Material, 23, 4453 (2011).
[38]J. Jeong, J. Kim, H. Kim, Ag grid/ITO hybrid transparent electrodes prepared by inkjet printing, Solar Energy Materials & Solar Cells, 95, 1974 (2011).
[39]Y. Galagan, E. W.C. Coenen, S. Sabik, H. H. Gorter, M. Barink, S. C. Veenstra, J. M. Kroon, R. Andriessen, P. W. M. Blom, Evaluation of ink-jet printed current collecting grids and busbars for ITO-free organic solar cells, Solar Energy Materials & Solar Cells, 104, 32 (2012).
[40]K. Choi, J. Kim, Y. J. Noh, S. I. Na, H. K. Kim, Ag nanowire-embedded ITO films as a near-infrared transparent and flexible anode for flexible organic solar cells, Solar Energy Materials & Solar Cells, 110, 147 (2013).
[41]J. Lewis, S. Grego, B. Chalamala, E. Vick, D. Temple, Highly flexible transparent electrodes for organic light-emitting diode-based displays, Applied Physics Letters, 85, 3450 (2004).
[42]C. Guille´n, J. Herrero, ITO/metal/ITO multilayer structures based on Ag and Cu metal films for high-performance transparent electrodes, Solar Energy Materials & Solar Cells, 92, 938 (2008).
[43]R. B. Pode, C. J. Lee, D. G. Moon, J. I. Han, Transparent conducting metal electrode for top emission organic light-emitting devices: Ca–Ag double layer, Applied Physics Letters, 84, 4614 (2004).
[44]M. Fahland, T. Vogt, W. Schoenberger, N. Schiller, Optical properties of metal based transparent electrodes on polymer films, Thin Solid Films, 516, 5777 (2008).
[45]H. Lin, S. Chiu, L. Lin, Z. Hung, Y. Chen, F. Lin , K. Wong, Device Engineering for highly efficient top-Illuminated organic solar cells with microcavity structures, Advanced Materials, 24, 2269 (2012).
[46]K. Tvingstedt, O. Inganas, Electrode Grids for ITO-free organic photovoltaic devices, Advanced Materials, 19, 2893 (2007).
[47]M. Kang, M. Kim, J. Kim, L. J. Guo, Organic solar cells using nanoimprinted transparent metal electrodes, Advanced Materials, 20, 4408 (2008).
[48]M. Kang, L. Jay Guo, Nanoimprinted semitransparent metal electrodes and their application in organic light-emitting diodes, Advanced Materials, 19, 1391 (2007).
[49]M. Song, D. S. You, K. Lim, S. Park, S. Jung, C. S. Kim, D. Kim, D. Kim, J. Kim, J. Park, Y. Kang, Ji. Heo, S. Jin, J. Park, J. Kang, Highly efficient and bendable organic solar cells with solution-processed silver nanowire electrodes, Advanced Materials, 23, 4177 (2013).
[50]T. Lim, J. Jeong, J. Chung, J. T. Chung, Evaporation of inkjet printed pico-liter droplet on heated substrates with different thermal conductivity, Journal of Mechanical Science and Technology, 23, 1788 (2009).
[51]A. L. Dearden, P. J. Smith, D. Shin, N. Reis, B. Derby, P. O’Brien, A low curing temperature silver ink for use in ink-jet printing and subsequent production of conductive tracks, Macromolecular Rapid Communications, 26, 315 (2005).
[52]G. L. Whiting, A. C. Arias, Chemically modified ink-jet printed silver electrodes for organic field-effect transistors, Applied Physics Letters, 95, 253302 (2009).
[53]V. G. Shah, D. B. Wallace, Low-cost solar cell fabrication by drop-on-demand ink-jet printing, Proceedings of IMAPS 37th Annual International Symposium on Microelectronics, Long Beach, CA, November 14-18, 1 (2004).
[54]R. Paetzold, K. Heuser, D. Henseler, S. Roeger, G. Wittmann, Performance of flexible polymeric light-emitting diodes under bending conditions, Applied Physics Letters, 82, 3342 (2003).
[55]J. Y. Kim, J. H. Jung, D. E. Lee, J. Joo, Enhancement of electrical conductivity of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) by a change of solvents, Synthetic Metals, 126, 311 (2002).
[56]Y. H. Kim, C. Sachse, M. L. Machala, C. May, L. Müller-Meskamp, K. Leo, Highly conductive PEDOT:PSS electrode with optimized solvent and thermal post-treatment for ITO-free organic solar cells, Advanced Functional Materials, 21, 1076 (2011).
[57]T. Aernoutsa, P. Vanlaekea, W. Geensa, J. Poortmansa, P. Heremansa, S. Borghsa, R. Mertensa, R. Andriessenb, L. Leendersb, Printable anodes for flexible organic solar cell modules, Thin Solid Films, 451, 22 (2004).
[58]M. Choia, Y. Kim, C. Ha, Polymers for flexible displays: From material selection to device applications, Progress in Polymer Science, 33, 581 (2008).
[59]G. Haacke, New figure of merit for transparent conductors, Journal of Applied Physics, 47, 4086 (1976).
[60]D. S. Ghosh, T. L. Chen, V. Pruneri, High figure-of-merit ultrathin metal transparent electrodes incorporating a conductive grid, Applied Physics Letters, 96, 041109 (2010).
[61]G. Bhattacharya, H. Saha, Simple automatic current/voltage characteristics plotter for solar cells and arrays, Electronic Circuits and Systems, IEE Proceedings G Electronic Circuits and Systems, 133, 289 (1986).
[62]E. Lorenzo, Solar electricity: engineering of photovoltaic systems (1994).
[63]J. D. Servaites, S. Yeganeh, T. J. Marks, M. A. Ratne, Efficiency enhancement in organic photovoltaic cells: consequences of optimizing series resistance, Advanced Functional Materials, 20, 97 (2010).
[64]C. G. Granqvist, A. Hultåker, Transparent and conducting ITO films: new developments and applications, Thin Solid Film, 411, 1 (2002).
[65]D. L. Meier, D. K. Schroder, Contact resistance: its measurement and relative importance to power loss in a solar cell, Electron Devices, IEEE Transactions on Electron Devices, 31, 647 (1984).
[66]Y. Taka, K. Kim, H. Park, K. Lee, J. Lee, Criteria for ITO (indium–tin-oxide) thin film as the bottom electrode of an organic light emitting diode, Thin Solid Film, 411, 12 (2002).
[67]路國鑫, 結合異質結構與噴印技術製作高解析度可調厚度彩色濾光片之黑色矩陣, 國立清華大學動力機械工程學系碩士論文 (2012)。