簡易檢索 / 詳目顯示

研究生: 林佳欣
Lin, Livy
論文名稱: Biochemical characterization and drug discovery of shikimate dehydrogenase from Helicobacter pylori
研究胃幽門螺旋菌shikimate dehydrogenase 生物化學特性與抑制劑之開發
指導教授: 王雯靜
Wang, Wen-Ching
口試委員: 王雯靜
許宗雄
林立元
楊進木
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 分子與細胞生物研究所
Institute of Molecular and Cellular Biology
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 64
中文關鍵詞: 胃幽門螺旋菌莽草酸去氫鋂
外文關鍵詞: Helicobacter pylori, shikimate dehydrogenase
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • The shikimate biosynthetic pathway is essential to microorganisms and parasites but absent from mammals. Shikimate dehydrogenase (SDH), the fourth enzyme in this pathway, catalyzes the NADPH-dependent reduction of 3-dehydroshikimate to shikimate. Therefore, SDH is considered as an attractive target for the discovery of antimicrobial agent. In this work, we have expressed and purified SDH from Helicobacter pylori (HpSDH) and Mycobacterium tuberculosis (MtSDH). Enzymatic analysis of HpSDH showed the Km values as 130 μM toward shikimate, and 186 μM toward NADP, respectively. Using pharmacophore hotspot model, six potent inhibitors (compounds A-F) with good IC50 values (1.4−6.9 μM) were identified (Figure 16). Compound C had a noncompetitive inhibition pattern, whereas compound A, B, D, E and F displayed uncompetitive inhibition pattern with respect to shikimate. Compound C displayed noncompetitive inhibition mode, and compounds A, B, D, E and F showed uncompetitive inhibition modes with respect to NADP. In addition, a combination of site-directed mutagenesis in the shikimate binding pocket (S16A, T65A, K69A, D105A, Y210A and Q237A) and isothermal titration calorimetry (ITC) studies was used to demonstrate the importance of these conserved residues. These results provide useful information for the development of novel antibiotics to treat H. pylori-associated infection.


    目錄 表目錄 圖目錄 致謝 中文摘要 Abstract 第一章、 序言 1.1 結核分枝桿菌 (Mycobacterium tuberculosis) 1.1.1 結核分枝桿菌之發現 1.1.2 結核分枝桿菌之致病性 1.1.3 流行病學 1.1.4 與特定疾病的相關性 1.2 胃幽門螺旋菌 (Helicobacter pylori) 1.2.1 胃幽門螺旋菌之發現 1.2.2 胃幽門螺旋菌之特徵 1.2.3 流行病學 1.2.4 與特定疾病的相關性 1.3 莽草酸代謝路徑 (Shikimate pathway) 1.4 Shikimate kinase (SK,2.7.1.71) 1.5 Shikimate dehydrogenase (SDH,EC 1.1.1.25) 第二章、 研究動機與目的材料與方法 2.1 MtSK基因選殖與質體構築 2.2 MtSDH基因選殖與質體構築 2.3 MtSK、MtSDH及HpSDH 大量表現 2.4 蛋白質純化 2.4.1 親和性層析法 (affinity chromatography) 2.4.2 膠體過濾法 (gel filtration) 2.5 蛋白質濃縮與透析 2.6 蛋白質濃度測定 2.7 蛋白質晶體培養 2.8 晶體繞射數據收集 2.9 HpSDH複合型態模型的建構 2.10 蛋白質結構圖型繪製 2.11 HpSDH定點突變 (site-directed mutagenesis) 2.12 HpSDH 蛋白質活性測定 2.13 HpSDH 抑制物篩選 2.14 Isothermal titration calorimetry測定 第三章、 實驗結果 3.1 MtSK 蛋白質純化與結晶分析研究 3.1.1 MtSK 基因選殖與質體構築 3.1.2 MtSK蛋白質的表現與純化 3.1.3 MtSK 晶體培養 3.2 MtSDH 蛋白質純化分析研究 3.2.1 MtSDH基因選殖與質體構築 3.2.2 MtSDH 蛋白質的表現與純化 3.3 HpSDH 晶體結構分析研究 3.3.1 HpSDH 蛋白質的表現與純化 3.3.2 HpSDH 晶體培養 3.3.3 HpSDH繞射數據收集與分析 3.3.4 HpSDH 結構模型的建立 3.3.5 HpSDH 結構模型的驗證 3.3.6 HpSDH的3D結構 3.3.7 受質鍵結區域 (substrate-binding site) 3.4 酵素活性分析測定研究 3.4.1 MtSDH 酵素活性分析測定研究 3.4.2 HpSDH 酵素活性的分析 3.4.3 HpSDH 抑制物篩選 3.4.4 HpSDH 之 IC50、KI值與抑制型態測定 3.5 HpSDH 定點突變 3.6 Isothermal titration calorimetry測定 第四章、 討論 4.1 MtSK 蛋白質純化與結晶分析研究 4.2 MtSDH 蛋白質純化與結晶分析研究 4.3 HpSDH 晶體結構分析研究 4.4 酵素活性分析測定研究 4.5 HpSDH 之ITC測定 4.6 未來研究方向 4.7 總結 參考文獻 表 圖

    [1]J. Asselineau, E. Lederer, Structure of the mycolic acids of Mycobacteria. Nature 166 (1950) 782-783.
    [2]C. Dye, S. Scheele, P. Dolin, V. Pathania, M.C. Raviglione, Consensus statement. Global burden of tuberculosis: estimated incidence, prevalence, and mortality by country. WHO Global Surveillance and Monitoring Project. JAMA 282 (1999) 677-686.
    [3]B.R. Bloom, C.J. Murray, Tuberculosis: commentary on a reemergent killer. Science 257 (1992) 1055-1064.
    [4]B.J. Marshall, J.R. Warren, Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet 1 (1984) 1311-1315.
    [5]C.S. Goodwin, R.K. McCulloch, J.A. Armstrong, S.H. Wee, Unusual cellular fatty acids and distinctive ultrastructure in a new spiral bacterium (Campylobacter pyloridis) from the human gastric mucosa. J Med Microbiol 19 (1985) 257-267.
    [6]P.J. Romaniuk, B. Zoltowska, T.J. Trust, D.J. Lane, G.J. Olsen, N.R. Pace, D.A. Stahl, Campylobacter pylori, the spiral bacterium associated with human gastritis, is not a true Campylobacter sp. J Bacteriol 169 (1987) 2137-2141.
    [7]J. Parsonnet, The incidence of Helicobacter pylori infection. Aliment Pharmacol Ther 9 Suppl 2 (1995) 45-51.
    [8]L.M. Brown, Helicobacter pylori: epidemiology and routes of transmission. Epidemiol Rev 22 (2000) 283-297.
    [9]M.J. Blaser, Helicobacter pylori and the pathogenesis of gastroduodenal inflammation. J Infect Dis 161 (1990) 626-633.
    [10]E.A. Rauws, G.N. Tytgat, Cure of duodenal ulcer associated with eradication of Helicobacter pylori. Lancet 335 (1990) 1233-1235.
    [11]C. Macarthur, N. Saunders, W. Feldman, Helicobacter pylori, gastroduodenal disease, and recurrent abdominal pain in children. JAMA 273 (1995) 729-734.
    [12]A.C. Wotherspoon, Gastric lymphoma of mucosa-associated lymphoid tissue and Helicobacter pylori. Annu Rev Med 49 (1998) 289-299.
    [13]J. Parsonnet, G.D. Friedman, D.P. Vandersteen, Y. Chang, J.H. Vogelman, N. Orentreich, R.K. Sibley, Helicobacter pylori infection and the risk of gastric carcinoma. N Engl J Med 325 (1991) 1127-1131.
    [14]F.E. Dewhirst, C. Seymour, G.J. Fraser, B.J. Paster, J.G. Fox, Phylogeny of Helicobacter isolates from bird and swine feces and description of Helicobacter pametensis sp. nov. Int J Syst Bacteriol 44 (1994) 553-560.
    [15]C.W. Roberts, F. Roberts, R.E. Lyons, M.J. Kirisits, E.J. Mui, J. Finnerty, J.J. Johnson, D.J. Ferguson, J.R. Coggins, T. Krell, G.H. Coombs, W.K. Milhous, D.E. Kyle, S. Tzipori, J.
    27
    Barnwell, J.B. Dame, J. Carlton, R. McLeod, The shikimate pathway and its branches in apicomplexan parasites. J Infect Dis 185 Suppl 1 (2002) S25-36.
    [16]K.M. Herrmann, L.M. Weaver, The Shikimate Pathway. Annu Rev Plant Physiol Plant Mol Biol 50 (1999) 473-503.
    [17]M.A. Priestman, M.L. Healy, T. Funke, A. Becker, E. Schonbrunn, Molecular basis for the glyphosate-insensitivity of the reaction of 5-enolpyruvylshikimate 3-phosphate synthase with shikimate. FEBS Lett 579 (2005) 5773-5780.
    [18]M.R. Marques, J.H. Pereira, J.S. Oliveira, L.A. Basso, W.F. de Azevedo, Jr., D.S. Santos, M.S. Palma, The inhibition of 5-enolpyruvylshikimate-3-phosphate synthase as a model for development of novel antimicrobials. Curr Drug Targets 8 (2007) 445-457.
    [19]J.E. Walker, M. Saraste, M.J. Runswick, N.J. Gay, Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1 (1982) 945-951.
    [20]Y. Gu, L. Reshetnikova, Y. Li, Y. Wu, H. Yan, S. Singh, X. Ji, Crystal structure of shikimate kinase from Mycobacterium tuberculosis reveals the dynamic role of the LID domain in catalysis. J Mol Biol 319 (2002) 779-789.
    [21]B. Dhaliwal, C.E. Nichols, J. Ren, M. Lockyer, I. Charles, A.R. Hawkins, D.K. Stammers, Crystallographic studies of shikimate binding and induced conformational changes in Mycobacterium tuberculosis shikimate kinase. FEBS Lett 574 (2004) 49-54.
    [22]J.H. Pereira, J.S. de Oliveira, F. Canduri, M.V. Dias, M.S. Palma, L.A. Basso, D.S. Santos, W.F. de Azevedo, Jr., Structure of shikimate kinase from Mycobacterium tuberculosis reveals the binding of shikimic acid. Acta Crystallogr D Biol Crystallogr 60 (2004) 2310-2319.
    [23]M.L. Magalhaes, C.P. Pereira, L.A. Basso, D.S. Santos, Cloning and expression of functional shikimate dehydrogenase (EC 1.1.1.25) from Mycobacterium tuberculosis H37Rv. Protein Expr Purif 26 (2002) 59-64.
    [24]G. Michel, A.W. Roszak, V. Sauve, J. Maclean, A. Matte, J.R. Coggins, M. Cygler, A.J. Lapthorn, Structures of shikimate dehydrogenase AroE and its Paralog YdiB. A common structural framework for different activities. J Biol Chem 278 (2003) 19463-19472.
    [25]A.K. Padyana, S.K. Burley, Crystal structure of shikimate 5-dehydrogenase (SDH) bound to NADP: insights into function and evolution. Structure 11 (2003) 1005-1013.
    [26]S. Ye, F. Von Delft, A. Brooun, M.W. Knuth, R.V. Swanson, D.E. McRee, The crystal structure of shikimate dehydrogenase (AroE) reveals a unique NADPH binding mode. J Bacteriol 185 (2003) 4144-4151.
    [27]J.T. Lin, J.T. Wang, M.S. Wu, T.H. Wang, T.K. Lee, C.J. Chen, Seroprevalence study of Helicobacter pylori infection in patients with gastroduodenal diseases. J Formos Med Assoc 93 (1994) 122-127.
    [28]W.J. Lee, M.S. Wu, C.N. Chen, R.H. Yuan, J.T. Lin, K.J. Chang, Seroprevalence of Helicobacter pylori in patients with surgical peptic ulcer. Arch Surg 132 (1997) 430-433;
    28
    discussion 434.
    [29]M.M. Khan, Drug resistance in Helicobacter pylori. J Pak Med Assoc 45 (1995) 1-2.
    [30]The CCP4 suite: programs for protein crystallography. Acta Crystallogr D Biol Crystallogr 50 (1994) 760-763.
    [31]A. Vagin, A. Teplyakov, MOLREP: an Automated Program for Molecular Replacement. Journal of Applied Crystallography 30 (1997) 1022-1025.
    [32]P. Emsley, K. Cowtan, Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60 (2004) 2126-2132.
    [33]A. Perrakis, R. Morris, V.S. Lamzin, Automated protein model building combined with iterative structure refinement. Nature structural biology 6 (1999) 458-463.
    [34]G.N. Murshudov, A.A. Vagin, E.J. Dodson, Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 53 (1997) 240-255.
    [35]R.A. Laskowski, M.W. MacArthur, D.S. Moss, J.M. Thornton, PROCHECK: a program to check the stereochemical quality of protein structures. Journal of Applied Crystallography 26 (1993) 283-291.
    [36]I.O. Fonseca, M.L. Magalhaes, J.S. Oliveira, R.G. Silva, M.A. Mendes, M.S. Palma, D.S. Santos, L.A. Basso, Functional shikimate dehydrogenase from Mycobacterium tuberculosis H37Rv: purification and characterization. Protein Expr Purif 46 (2006) 429-437.
    [37]J. Gan, Y. Wu, P. Prabakaran, Y. Gu, Y. Li, M. Andrykovitch, H. Liu, Y. Gong, H. Yan, X. Ji, Structural and biochemical analyses of shikimate dehydrogenase AroE from Aquifex aeolicus: implications for the catalytic mechanism. Biochemistry 46 (2007) 9513-9522.
    [38]S. Lim, I. Schroder, H.G. Monbouquette, A thermostable shikimate 5-dehydrogenase from the archaeon Archaeoglobus fulgidus. FEMS Microbiol Lett 238 (2004) 101-106.
    [39]C. Han, T. Hu, D. Wu, S. Qu, J. Zhou, J. Ding, X. Shen, D. Qu, H. Jiang, X-ray crystallographic and enzymatic analyses of shikimate dehydrogenase from Staphylococcus epidermidis. FEBS J 276 (2009) 1125-1139.
    [40]A. Velazquez Campoy, E. Freire, ITC in the post-genomic era...? Priceless. Biophys Chem 115 (2005) 115-124.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE