研究生: |
林佳欣 Lin, Livy |
---|---|
論文名稱: |
Biochemical characterization and drug discovery of shikimate dehydrogenase from Helicobacter pylori 研究胃幽門螺旋菌shikimate dehydrogenase 生物化學特性與抑制劑之開發 |
指導教授: |
王雯靜
Wang, Wen-Ching |
口試委員: |
王雯靜
許宗雄 林立元 楊進木 |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子與細胞生物研究所 Institute of Molecular and Cellular Biology |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 64 |
中文關鍵詞: | 胃幽門螺旋菌 、莽草酸去氫鋂 |
外文關鍵詞: | Helicobacter pylori, shikimate dehydrogenase |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
The shikimate biosynthetic pathway is essential to microorganisms and parasites but absent from mammals. Shikimate dehydrogenase (SDH), the fourth enzyme in this pathway, catalyzes the NADPH-dependent reduction of 3-dehydroshikimate to shikimate. Therefore, SDH is considered as an attractive target for the discovery of antimicrobial agent. In this work, we have expressed and purified SDH from Helicobacter pylori (HpSDH) and Mycobacterium tuberculosis (MtSDH). Enzymatic analysis of HpSDH showed the Km values as 130 μM toward shikimate, and 186 μM toward NADP, respectively. Using pharmacophore hotspot model, six potent inhibitors (compounds A-F) with good IC50 values (1.4−6.9 μM) were identified (Figure 16). Compound C had a noncompetitive inhibition pattern, whereas compound A, B, D, E and F displayed uncompetitive inhibition pattern with respect to shikimate. Compound C displayed noncompetitive inhibition mode, and compounds A, B, D, E and F showed uncompetitive inhibition modes with respect to NADP. In addition, a combination of site-directed mutagenesis in the shikimate binding pocket (S16A, T65A, K69A, D105A, Y210A and Q237A) and isothermal titration calorimetry (ITC) studies was used to demonstrate the importance of these conserved residues. These results provide useful information for the development of novel antibiotics to treat H. pylori-associated infection.
[1]J. Asselineau, E. Lederer, Structure of the mycolic acids of Mycobacteria. Nature 166 (1950) 782-783.
[2]C. Dye, S. Scheele, P. Dolin, V. Pathania, M.C. Raviglione, Consensus statement. Global burden of tuberculosis: estimated incidence, prevalence, and mortality by country. WHO Global Surveillance and Monitoring Project. JAMA 282 (1999) 677-686.
[3]B.R. Bloom, C.J. Murray, Tuberculosis: commentary on a reemergent killer. Science 257 (1992) 1055-1064.
[4]B.J. Marshall, J.R. Warren, Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet 1 (1984) 1311-1315.
[5]C.S. Goodwin, R.K. McCulloch, J.A. Armstrong, S.H. Wee, Unusual cellular fatty acids and distinctive ultrastructure in a new spiral bacterium (Campylobacter pyloridis) from the human gastric mucosa. J Med Microbiol 19 (1985) 257-267.
[6]P.J. Romaniuk, B. Zoltowska, T.J. Trust, D.J. Lane, G.J. Olsen, N.R. Pace, D.A. Stahl, Campylobacter pylori, the spiral bacterium associated with human gastritis, is not a true Campylobacter sp. J Bacteriol 169 (1987) 2137-2141.
[7]J. Parsonnet, The incidence of Helicobacter pylori infection. Aliment Pharmacol Ther 9 Suppl 2 (1995) 45-51.
[8]L.M. Brown, Helicobacter pylori: epidemiology and routes of transmission. Epidemiol Rev 22 (2000) 283-297.
[9]M.J. Blaser, Helicobacter pylori and the pathogenesis of gastroduodenal inflammation. J Infect Dis 161 (1990) 626-633.
[10]E.A. Rauws, G.N. Tytgat, Cure of duodenal ulcer associated with eradication of Helicobacter pylori. Lancet 335 (1990) 1233-1235.
[11]C. Macarthur, N. Saunders, W. Feldman, Helicobacter pylori, gastroduodenal disease, and recurrent abdominal pain in children. JAMA 273 (1995) 729-734.
[12]A.C. Wotherspoon, Gastric lymphoma of mucosa-associated lymphoid tissue and Helicobacter pylori. Annu Rev Med 49 (1998) 289-299.
[13]J. Parsonnet, G.D. Friedman, D.P. Vandersteen, Y. Chang, J.H. Vogelman, N. Orentreich, R.K. Sibley, Helicobacter pylori infection and the risk of gastric carcinoma. N Engl J Med 325 (1991) 1127-1131.
[14]F.E. Dewhirst, C. Seymour, G.J. Fraser, B.J. Paster, J.G. Fox, Phylogeny of Helicobacter isolates from bird and swine feces and description of Helicobacter pametensis sp. nov. Int J Syst Bacteriol 44 (1994) 553-560.
[15]C.W. Roberts, F. Roberts, R.E. Lyons, M.J. Kirisits, E.J. Mui, J. Finnerty, J.J. Johnson, D.J. Ferguson, J.R. Coggins, T. Krell, G.H. Coombs, W.K. Milhous, D.E. Kyle, S. Tzipori, J.
27
Barnwell, J.B. Dame, J. Carlton, R. McLeod, The shikimate pathway and its branches in apicomplexan parasites. J Infect Dis 185 Suppl 1 (2002) S25-36.
[16]K.M. Herrmann, L.M. Weaver, The Shikimate Pathway. Annu Rev Plant Physiol Plant Mol Biol 50 (1999) 473-503.
[17]M.A. Priestman, M.L. Healy, T. Funke, A. Becker, E. Schonbrunn, Molecular basis for the glyphosate-insensitivity of the reaction of 5-enolpyruvylshikimate 3-phosphate synthase with shikimate. FEBS Lett 579 (2005) 5773-5780.
[18]M.R. Marques, J.H. Pereira, J.S. Oliveira, L.A. Basso, W.F. de Azevedo, Jr., D.S. Santos, M.S. Palma, The inhibition of 5-enolpyruvylshikimate-3-phosphate synthase as a model for development of novel antimicrobials. Curr Drug Targets 8 (2007) 445-457.
[19]J.E. Walker, M. Saraste, M.J. Runswick, N.J. Gay, Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1 (1982) 945-951.
[20]Y. Gu, L. Reshetnikova, Y. Li, Y. Wu, H. Yan, S. Singh, X. Ji, Crystal structure of shikimate kinase from Mycobacterium tuberculosis reveals the dynamic role of the LID domain in catalysis. J Mol Biol 319 (2002) 779-789.
[21]B. Dhaliwal, C.E. Nichols, J. Ren, M. Lockyer, I. Charles, A.R. Hawkins, D.K. Stammers, Crystallographic studies of shikimate binding and induced conformational changes in Mycobacterium tuberculosis shikimate kinase. FEBS Lett 574 (2004) 49-54.
[22]J.H. Pereira, J.S. de Oliveira, F. Canduri, M.V. Dias, M.S. Palma, L.A. Basso, D.S. Santos, W.F. de Azevedo, Jr., Structure of shikimate kinase from Mycobacterium tuberculosis reveals the binding of shikimic acid. Acta Crystallogr D Biol Crystallogr 60 (2004) 2310-2319.
[23]M.L. Magalhaes, C.P. Pereira, L.A. Basso, D.S. Santos, Cloning and expression of functional shikimate dehydrogenase (EC 1.1.1.25) from Mycobacterium tuberculosis H37Rv. Protein Expr Purif 26 (2002) 59-64.
[24]G. Michel, A.W. Roszak, V. Sauve, J. Maclean, A. Matte, J.R. Coggins, M. Cygler, A.J. Lapthorn, Structures of shikimate dehydrogenase AroE and its Paralog YdiB. A common structural framework for different activities. J Biol Chem 278 (2003) 19463-19472.
[25]A.K. Padyana, S.K. Burley, Crystal structure of shikimate 5-dehydrogenase (SDH) bound to NADP: insights into function and evolution. Structure 11 (2003) 1005-1013.
[26]S. Ye, F. Von Delft, A. Brooun, M.W. Knuth, R.V. Swanson, D.E. McRee, The crystal structure of shikimate dehydrogenase (AroE) reveals a unique NADPH binding mode. J Bacteriol 185 (2003) 4144-4151.
[27]J.T. Lin, J.T. Wang, M.S. Wu, T.H. Wang, T.K. Lee, C.J. Chen, Seroprevalence study of Helicobacter pylori infection in patients with gastroduodenal diseases. J Formos Med Assoc 93 (1994) 122-127.
[28]W.J. Lee, M.S. Wu, C.N. Chen, R.H. Yuan, J.T. Lin, K.J. Chang, Seroprevalence of Helicobacter pylori in patients with surgical peptic ulcer. Arch Surg 132 (1997) 430-433;
28
discussion 434.
[29]M.M. Khan, Drug resistance in Helicobacter pylori. J Pak Med Assoc 45 (1995) 1-2.
[30]The CCP4 suite: programs for protein crystallography. Acta Crystallogr D Biol Crystallogr 50 (1994) 760-763.
[31]A. Vagin, A. Teplyakov, MOLREP: an Automated Program for Molecular Replacement. Journal of Applied Crystallography 30 (1997) 1022-1025.
[32]P. Emsley, K. Cowtan, Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60 (2004) 2126-2132.
[33]A. Perrakis, R. Morris, V.S. Lamzin, Automated protein model building combined with iterative structure refinement. Nature structural biology 6 (1999) 458-463.
[34]G.N. Murshudov, A.A. Vagin, E.J. Dodson, Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 53 (1997) 240-255.
[35]R.A. Laskowski, M.W. MacArthur, D.S. Moss, J.M. Thornton, PROCHECK: a program to check the stereochemical quality of protein structures. Journal of Applied Crystallography 26 (1993) 283-291.
[36]I.O. Fonseca, M.L. Magalhaes, J.S. Oliveira, R.G. Silva, M.A. Mendes, M.S. Palma, D.S. Santos, L.A. Basso, Functional shikimate dehydrogenase from Mycobacterium tuberculosis H37Rv: purification and characterization. Protein Expr Purif 46 (2006) 429-437.
[37]J. Gan, Y. Wu, P. Prabakaran, Y. Gu, Y. Li, M. Andrykovitch, H. Liu, Y. Gong, H. Yan, X. Ji, Structural and biochemical analyses of shikimate dehydrogenase AroE from Aquifex aeolicus: implications for the catalytic mechanism. Biochemistry 46 (2007) 9513-9522.
[38]S. Lim, I. Schroder, H.G. Monbouquette, A thermostable shikimate 5-dehydrogenase from the archaeon Archaeoglobus fulgidus. FEMS Microbiol Lett 238 (2004) 101-106.
[39]C. Han, T. Hu, D. Wu, S. Qu, J. Zhou, J. Ding, X. Shen, D. Qu, H. Jiang, X-ray crystallographic and enzymatic analyses of shikimate dehydrogenase from Staphylococcus epidermidis. FEBS J 276 (2009) 1125-1139.
[40]A. Velazquez Campoy, E. Freire, ITC in the post-genomic era...? Priceless. Biophys Chem 115 (2005) 115-124.